Skip to main content

Enzymatically Synthesized Biosilica

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 8647 Accesses

Abstract

Structural biomaterials are hierarchically organized and biofabricated. Biosilica represents the main mineral component of the sponge skeletal elements, the spicules. We summarize recent data on the different levels of molecular, biological, and structural hierarchies controlling the synthesis of the picturesquely and intricately architectured spicules/skeletons.

Biosilica is a promising material/substance for the amelioration and/or treatment of human bone diseases and dysfunctions. It has been demonstrated that biosilica causes in vitro, a differential effect on the expression of the genes GlossaryTerm

OPG

(osteoprotegerin) and GlossaryTerm

RANKL

(ligand of the receptor activator of GlossaryTerm

NF-κB

), as well as induces the expression of the key mediator GlossaryTerm

BMP

-2 (bone morphogenetic protein 2); they are promising candidates for treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BAPD:

bis(p-aminophenoxy)-dimethylsilane

BMP:

bone morphogenetic protein

Cys:

cysteine

DNA:

deoxyribonucleic acid

HA:

hydroxyapatite

HF:

hydrofluoric

HR-SEM:

high-resolution scanning electron microscopy

NF-κB:

nuclear factor-κB

OPG:

osteoprotegerin

RANKL:

ligand of the receptor activator of NF-κB

RANK:

receptor activator of NF-κB

RAW:

ATCC cell line

TEM:

transmission electron microscopy

TEOS:

tetraethyl orthosilicate

aa:

amino acid

mRNA:

messenger RNA

References

  1. W.E.G. Müller: Molecular phylogeny of metazoa (Animals): Monophyletic origin, Naturwissenschaften 82, 321–329 (1995)

    Article  Google Scholar 

  2. W.E.G. Müller: How was the metazoan threshold crossed? The hypothetical Urmetazoa, Comp. Biochem. Physiol. 129, 433–460 (2001)

    Article  Google Scholar 

  3. W.E.G. Müller, J. Li, H.C. Schröder, L. Qiao, X.H. Wang: The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the urmetazoa during the proterozoic: A review, Biogeosciences 4, 219–232 (2007)

    Article  Google Scholar 

  4. D. Nicol: Cope's rule and precambrian and cambrian invertebrates, J. Paleontol. 40, 1397–1399 (1966)

    Google Scholar 

  5. L.R. Page: Shrinking to fit: Fluid jettison from a haemocoelic hydrostatic skeleton during defensive withdrawals of a gastropod larva, Proc. Biol. Sci. 274, 2989–2994 (2007)

    Article  Google Scholar 

  6. S. Xiao, A.J. Kaufman: Neoproterozoic Geobiology and Paleobiology. Topics in Geobiology (Springer, Berlin 2006)

    Book  Google Scholar 

  7. R.M. Alexander, A.S. Jayes, G.M.O. Maloiy, E.M. Wathuta: Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta), J. Zool. Lond. 189, 305–314 (1979)

    Article  Google Scholar 

  8. A.A. Biewener: Biomechanical consequences of scaling, J. Exp. Biol. 208, 1665–1676 (2005)

    Article  Google Scholar 

  9. S. Xiao, X. Yuan, A.H. Knoll: Eumetazoan fossils in terminal Proterozoic phosphorites?, Proc. Natl. Acad. Sci. USA 97, 13684–13689 (2000)

    Article  CAS  Google Scholar 

  10. G. Walker: Snowball Earth: The Story of The Great Global Catastrophe that Spawned Life as we know it (Crown, New York 2003)

    Google Scholar 

  11. X.H. Wang, H.C. Schröder, W.E.G. Müller: Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni: Morphology, biochemistry, and molecular biology, Int. Rev. Cell Mol. Biol. 273, 69–115 (2009)

    Article  CAS  Google Scholar 

  12. P.M. Duncan: On some remarkable enlargements of the axial canals of sponge spicules and their causes, J. R. Microsc. Soc. (Ser 2) 1, 557–572 (1881)

    Article  Google Scholar 

  13. J.N. Cha, K. Shimizu, Y. Zhou, S.C. Christianssen, B.F. Chmelka, G.D. Stucky, D.E. Morse: Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro, Proc. Natl. Acad. Sci. USA 96, 361–365 (1999)

    Article  CAS  Google Scholar 

  14. H.C. Schröder, A. Krasko, G. Le Pennec, T. Adell, H. Hassanein, I.M. Müller, W.E.G. Müller: Silicase, an enzyme which degrades biogenous amorphous silica: Contribution to the metabolism of silica deposition in the demosponge Suberites domuncula, Prog. Mol. Subcell. Biol. 33, 249–268 (2003)

    Article  Google Scholar 

  15. C. Eckert, H.C. Schröder, D. Brandt, S. Perovic-Ottstadt, W.E.G. Müller: A histochemical and electron microscopic analysis of the spiculogenesis in the demosponge Suberites domuncula, J. Histochem. Cytochem. 54, 1031–1040 (2006)

    Article  CAS  Google Scholar 

  16. G. Imsiecke, W.E.G. Müller: Unusual presence and intranuclear storage of silica crystals in the freshwater sponges Ephydatia muelleri and Spongilla lacustris (Porifera: Spongillidae), Cell Mol. Biol. 41, 827–832 (1995)

    CAS  Google Scholar 

  17. M.R. Custódio, I. Prokic, R. Steffen, C. Koziol, R. Borojevic, F. Brümmer, M. Nickel, W.E.G. Müller: Primmorphs generated from dissociated cells of the sponge Suberites domuncula: A model system for studies of cell proliferation and cell death, Mech. Ageing Dev. 105, 45–59 (1998)

    Article  Google Scholar 

  18. W.E.G. Müller, X.H. Wang, S.I. Belikov, W. Tremel, U. Schloßmacher, A. Natoli, D. Brandt, A. Boreiko, M.N. Tahir, I.M. Müller, H.C. Schröder: Formation of siliceous spicules in demosponges: Example Suberites domuncula. In: Handbook of Biomineralization, The Biology of Biominerals Structure Formation, Vol. 1, ed. by E. Bäuerlein (Wiley-VCH, Weinheim 2007) pp. 59–82

    Chapter  Google Scholar 

  19. K. Shimizu, J. Cha, G.D. Stucky, D.E. Morse: Silicatein alpha: Cathepsin L-like protein in sponge biosilica, Proc. Natl. Acad. Sci. USA 95, 6234–6238 (1998)

    Article  CAS  Google Scholar 

  20. W.E.G. Müller, X.H. Wang, K. Kropf, A. Boreiko, U. Schloßmacher, D. Brandt, H.C. Schröder, M. Wiens: Silicatein expression in the hexactinellid Crateromorpha meyeri: The lead marker gene restricted to siliceous sponges, Cell Tissue Res. 333, 339–351 (2008)

    Article  Google Scholar 

  21. W.E.G. Müller, K. Jochum, B. Stoll, X.H. Wang: Formation of giant spicule from quartz glass by the deep sea sponge Monorhaphis, Chem. Mater. 20, 4703–4711 (2008)

    Article  Google Scholar 

  22. W.E.G. Müller, M. Rothenberger, A. Boreiko, W. Tremel, A. Reiber, H.C. Schröder: Formation of siliceous spicules in the marine demosponge Suberites domuncula, Cell Tissue Res. 321, 285–297 (2005)

    Article  Google Scholar 

  23. H.C. Schröder, A. Boreiko, M. Korzhev, M.N. Tahir, W. Tremel, C. Eckert, H. Ushijima, I.M. Müller, W.E.G. Müller: Co-expression and functional interaction of silicatein with galectin: Matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula, J. Biol. Chem. 281, 12001–12009 (2006)

    Article  Google Scholar 

  24. W.E.G. Müller, U. Schloßmacher, X.H. Wang, A. Boreiko, D. Brandt, S.E. Wolf, W. Tremel, H.C. Schröder: Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica-poly-merase and silica-esterase), FEBS Journal 275, 362–370 (2008)

    Article  Google Scholar 

  25. W.E.G. Müller, X.H. Wang, F.Z. Cui, K.P. Jochum, W. Tremel, J. Bill, H.C. Schröder, F. Natalio, U. Schloßmacher, M. Wiens: Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials, Appl. Microbiol. Biotechnol. 83, 397–413 (2009)

    Article  Google Scholar 

  26. M. Fairhead, K.A. Johnson, T. Kowatz, S.A. McMahon, L.G. Carter, M. Oke, H. Liu, J.H. Naismith, C.F. van der Walle: Crystal structure and silica condensing activities of silicatein a-cathepsin L chimeras, Chem. Commun. 21, 1765–1767 (2008)

    Article  Google Scholar 

  27. H.C. Schröder, M. Wiens, U. Schloßmacher, D. Brandt, W.E.G. Müller: Silicatein-mediated polycondensation of orthosilicic acid: Modeling of catalytic mechanism involving ring formation, Silicon 4, 33–38 (2012)

    Article  Google Scholar 

  28. G. Croce, A. Frache, M. Milanesio, L. Marchese, M. Causà, D. Viterbo, A. Barbaglia, V. Bolis, G. Bavestrello, C. Cerrano, U. Benatti, M. Pozzolini, M. Giovine, H. Amenitsch: Structural characterization of siliceous spicules from marine sponges, Biophys. J. 86, 526–534 (2004)

    Article  CAS  Google Scholar 

  29. P.J. Flory, J.A. Semlyen: Macrocyclization equilibrium constants and the statistical configuration of poly(dimethylsiloxane) chains, J. Am. Chem. Soc. 88, 3209–3212 (1966)

    Article  CAS  Google Scholar 

  30. T. Nomura, A. Fujishima, Y. Fujisawa: Characterization and crystallization of recombinant human cathepsin L, Biochem. Biophys. Res. Commun. 228, 792–796 (1996)

    Article  CAS  Google Scholar 

  31. R.W. Mason: Species variants of cathepsin L and their immunological identification, Biochem. J. 240, 285–288 (1986)

    Article  CAS  Google Scholar 

  32. U. Schloßmacher, M. Wiens, H.C. Schröder, X.H. Wang, K.P. Jochum, W.E.G. Müller: Silintaphin-1: Interaction with silicatein during structure guiding biosilica formation, FEBS Journal 278, 1145–1155 (2011)

    Article  Google Scholar 

  33. G. Imsiecke, R. Steffen, M. Custodio, R. Borojevic, W.E.G. Müller: Formation of spicules by sclerocytes from the freshwater sponge Ephydatia muelleri in short-term cultures in vitro, In Vitro Cell Dev. Biol. 31, 528–535 (1995)

    Article  CAS  Google Scholar 

  34. X.H. Wang, U. Schloßmacher, M. Wiens, R. Batel, H.C. Schröder, W.E.G. Müller: Silicateins, silicatein interactors, and cellular interplay in sponge skeletogenesis: Formation of glass fiber-like spicules, FEBS Journal 279, 1721–1736 (2012)

    Article  CAS  Google Scholar 

  35. W.E.G. Müller, E. Mugnaioli, H.C. Schröder, U. Schloßmacher, M. Giovine, U. Kolb, X.H. Wang: Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: From biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems, Cell Tissue Res. 351, 49–58 (2013)

    Article  Google Scholar 

  36. W.E.G. Müller, H.C. Schröder, S.I. Belikov: Sustainable exploitation and conservation of the endemic Lake Baikal sponge (Lubomirskia baicalensis) for application in nanobiotechnology, Prog. Mol. Subcell. Biol. 47, 383–416 (2009)

    Article  Google Scholar 

  37. W.E.G. Müller, U. Schloßmacher, C. Eckert, A. Krasko, A. Boreiko, H. Ushijima, S.E. Wolf, W. Tremel, I.M. Müller, H.C. Schröder: Analysis of the axial filament in spicules of the demosponge Geodia cydonium: Different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes), Eur. J. Cell Biol. 86, 473–487 (2007)

    Article  Google Scholar 

  38. M.M. Maldonado, C. Carmona, Z. Velásquez, A. Puig, A. Cruzado, A. López, C.M. Young: Siliceous sponges as a silicon sink: An overlooked aspect of the benthopelagic coupling in the marine silicon cycle, Limnol. Oceanogr. 50, 799–809 (2005)

    Article  CAS  Google Scholar 

  39. K. Matsuo, N. Irie: Osteoclast–osteoblast communication, Arch. Biochem. Biophys. 473, 201–209 (2008)

    Article  CAS  Google Scholar 

  40. B. Moussian: Recent advances in understanding mechanisms of insect cuticle differentiation, Insect. Biochem. Molec. Biol. 40, 363–375 (2010)

    Article  CAS  Google Scholar 

  41. S.A. Greenberg, D. Sinclair: The polymerization of silicic acid, J. Phys. Chem. 59, 435–440 (1955)

    Article  CAS  Google Scholar 

  42. X.H. Wang, H.C. Schröder, K. Wang, J.A. Kaandorp, W.E.G. Müller: Genetic, biological and structural hierarchies during sponge spicule formation: From soft sol–gels to solid 3D silica composite structures, Soft Matter 5, 3657–3662 (2012)

    Google Scholar 

  43. E. Struyf, D.J. Conley: Silica: An essential nutrient in wetland biogeochemistry, Front. Ecol. Environ. View 7, 88–94 (2009)

    Article  Google Scholar 

  44. E.M. Carlisle: Silicon as an essential trace element in animal nutrition. In: Silicon Biochemistry, CIBA Foundation Symposium 121, ed. by D. Evered, M. O'Connor (John Wiley, Chichester 1986) pp. 123–136

    Google Scholar 

  45. K. Van Dyck, H. Robberecht, R. van Cauwenbergh, V. van Vlaslaer, H. Deelstra: Indication of silicon essentiality in humans, Biol. Trace Elem. Res. 77, 25–32 (2000)

    Article  Google Scholar 

  46. E.M. Carlisle: Silicon: An essential element for the chick, Science 178, 619–621 (1972)

    Article  CAS  Google Scholar 

  47. M. Wiens, X.H. Wang, U. Schloßmacher, I. Lieberwirth, G. Glasser, H. Ushijima, H.C. Schröder, W.E.G. Müller: Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2)cells, Calcif. Tissue Int. 87, 513–524 (2010)

    Article  CAS  Google Scholar 

  48. M. Wiens, X.H. Wang, H.C. Schröder, U. Kolb, U. Schloßmacher, H. Ushijima, W.E.G. Müller: The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells, Biomaterials 31, 7716–7725 (2010)

    Article  CAS  Google Scholar 

  49. M. Baud'huin, F. Lamoureux, L. Duplomb, F. Rédini, D. Heymann: RANKL, RANK, osteoprotegerin: Key partners of osteoimmunology and vascular diseases, Cell. Mol. Life Sci. 64, 2334–2350 (2007)

    Article  Google Scholar 

  50. U. Feige: Osteoprotegerin, Ann. Rheum. Dis. 60, 81–84 (2001)

    Google Scholar 

  51. T. Suda, N. Takahashi, N. Udagawa, E. Jimi, M.T. Gillespie, T.J. Martin: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families, Endocr. Rev. 20, 345–357 (1999)

    Article  CAS  Google Scholar 

  52. T.J. Martin, N.A. Sims: Osteoclast-derived activity in the coupling of bone formation to resorption, Trends Mol. Med. 11, 76–81 (2005)

    Article  CAS  Google Scholar 

  53. K. Schwarz, D.B. Milne: Growth-promoting effects of silicon in rats, Nature 239, 333–334 (1972)

    Article  CAS  Google Scholar 

  54. R. Jugdaohsingh: Silicon and bone health, J. Nutr. Health Aging 11, 99–110 (2007)

    CAS  Google Scholar 

  55. H.C. Schröder, A. Boreiko, A. Krasko, A. Reiber, H. Schwertner, W.E.G. Müller: Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces, J. Biomed. Matter Res. Part B 75B, 387–392 (2005)

    Article  Google Scholar 

  56. H.C. Schröder, X.H. Wang, M. Wiens, B. Diehl-Seifert, K. Kropf, U. Schloßmacher, W.E.G. Müller: Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): Inhibition of osteoclast growth and differentiation, J. Cell. Biochem. 113, 3197–3206 (2012)

    Article  Google Scholar 

  57. K.P. Jochum, X.H. Wang, T.W. Vennemann, B. Sinha, W.E.G. Müller: Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals, Chem. Geol. 300/301, 143–151 (2012)

    Article  Google Scholar 

  58. W.E.G. Müller, X.H. Wang, K.P. Jochum, H.C. Schröder: Self-healing, an intrinsic property of biomineralization processes, IUBMB Life 65, 382–396 (2013)

    Article  Google Scholar 

  59. C. Bernard: Introduction a l'Etude de la Medecine Experimentale (Editions Garnier-Flammarion, Paris 1865)

    Google Scholar 

  60. X.H. Wang, H.C. Schröder, M. Wiens, H. Ushijima, W.E.G. Müller: Bio-silica and bio-polyphosphate: Applications in biomedicine (bone formation), Curr. Opin. Biotechnol. 21, 1–9 (2012)

    Google Scholar 

  61. X.H. Wang, H.C. Schröder, D. Brandt, M. Wiens, I. Lieberwirth, G. Glasser, U. Schloßmacher, S.F. Wang, W.E.G. Müller: Sponge bio-silica formation involves syneresis following polycondensation in vivo, Chem. BioChem. 12, 2316–2324 (2011)

    CAS  Google Scholar 

  62. X.H. Wang, H.C. Schröder, Q.L. Feng, F. Draenert, W.E.G. Müller: The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: Fabrication of a morphogenetically-active polymer, Mar. Drugs 11, 718–746 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner E.G. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X., Schröder, H.C., Müller, W.E. (2015). Enzymatically Synthesized Biosilica. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_57

Download citation

Publish with us

Policies and ethics