Skip to main content
Log in

Silicatein-Mediated Polycondensation of Orthosilicic Acid: Modeling of a Catalytic Mechanism Involving Ring Formation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The sponge protein silicatein is the first enzyme that has been described to form an inorganic polymer (silica) from a monomeric precursor (tetraethoxysilane or orthosilicic acid). The models proposed for silicatein-mediated silica formation are mainly based on the use of synthetic substrates (hydrolytic cleavage of tetraethoxysilane to silanol compounds) or only consider the formation of less reactive silicic acid dimers (disilicic acid). Here we propose a new model for the catalytic mechanism of silicatein that leads to the formation of reactive, cyclic silicic acid species (trisiloxane rings and higher-membered siloxane rings) which easily promote the silica polycondensation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Proc Natl Acad Sci USA 95:6234–6238

    Article  CAS  Google Scholar 

  2. Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Eur J Biochem 267:4878–4887

    Article  CAS  Google Scholar 

  3. Müller WEG, Wang X, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Wiens M (2008) Cell Tissue Res 333:339–351

    Article  Google Scholar 

  4. Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) J Biol Chem 281:12001–12009

    Article  Google Scholar 

  5. Müller WEG, Wang X, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schloßmacher U, Wiens M (2009) Appl Microbiol Biotechnol 83:397–413

    Article  Google Scholar 

  6. Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Cell Tissue Res 321:285–297

    Article  Google Scholar 

  7. Müller WEG, Wang X, Sinha B, Wiens M, Schröder HC, Klaus Jochum P (2010) ChemBioChem 11:1077–1082

    Article  Google Scholar 

  8. Woesz A, Weaver JC, Kazanci M, Dauphin Y, Aizenberg J, Morse DE, Fratzl P (2006) J Mater Res 21:2068–2078

    Article  CAS  Google Scholar 

  9. Schröder HC, Natalio F, Shukoor I, Tremel W, Schloßmacher U, Wang XH, Müller WEG (2007) J Struct Biol 159:325–334

    Article  Google Scholar 

  10. Müller WEG, Schloßmacher U, Wang XH, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008) FEBS J 275:362–370

    Article  Google Scholar 

  11. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  12. Iler RK (1979) Solubility, polymerisation, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  13. Perry CC, Belton D, Shafran K (2003) In: Müller WEG (ed) Silicon biomineralization: Biology – Biochemistry – Molecular biology – Biotechnology. Prog Mol Subcell Biol 33:269–299

    Article  CAS  Google Scholar 

  14. Perry CC (2003) Rev Mineral Geochem 54:291–327

    Article  CAS  Google Scholar 

  15. Tarutani T (1989) Anal Sci 5:245–252

    Article  CAS  Google Scholar 

  16. Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci USA 96:361–365

    Article  CAS  Google Scholar 

  17. Müller WEG, Wang XM, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM, Schröder HC (2007) In: Bäuerlein E (ed) Handbook of biomineralization, vol 1: Biological aspects and structure formation. Wiley-VCH, Weinheim, pp 59–82

    Google Scholar 

  18. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  19. Turkenburg JP, Lamers MB, Brzozowski AM, Wright LM, Hubbard RE, Sturt SL, Williams DH (2002) Acta Crystallogr D Biol Crystallogr 58:451–455

    Article  Google Scholar 

  20. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  21. Shen MY, Sali A (2006) Protein Sci 15:2507–2524

    Article  CAS  Google Scholar 

  22. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) J Mol Biol 7:95–99

    Article  CAS  Google Scholar 

  23. Hodis E, Sussman JL (2009) Trends Biochem Sci 34:100–101

    Article  CAS  Google Scholar 

  24. Diller DJ, Merz KM (2001) Proteins 43:113–124

    Article  CAS  Google Scholar 

  25. Schröder HC, Brandt D, Schloßmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007) Naturwissenschaften 94:339–359

    Article  Google Scholar 

  26. Schröder HC, Wang XH, Tremel W, Ushijima H, Müller WEG (2008) Nat Prod Rep 25:455–474

    Article  Google Scholar 

  27. Wolf SE, Schloßmacher U, Pietuch A, Mathiasch B, Schröder HC, Müller WEG, Tremel W (2010) Dalton Trans 39:9245–9249

    Google Scholar 

  28. Fairhead M, Johnson KA, Kowatz T, Mcmahon SA, Carter LG, Oke M, Liu H, Naismith JH, Van Der Walle CF (2008) Chem Commun 1765–1767

  29. Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chemie [Int Ed] 38:780–782

    CAS  Google Scholar 

  30. Croce G, Frache A, Milanesio M, Marchese L, Causà M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C, Benatti U, Pozzolini M, Giovine M, Amenitsch H (2004) Biophys J 86:526–534

    Article  CAS  Google Scholar 

  31. Jacobson H, Stockmayer WH (1950) J Chem Phys 18:1600–1606

    Article  CAS  Google Scholar 

  32. Flory PJ, Semlyen JA (1966) J Am Chem Soc 88:3209–3212

    Article  CAS  Google Scholar 

  33. Wallace S, West JK, Hench LL (1993) J Non-Cryst Solids 152:101–108

    Article  CAS  Google Scholar 

  34. Hench LL, West JK (1995) Ann Rev Mat Sci 25:37–68

    Article  CAS  Google Scholar 

  35. Holmes RR (1995) Phosphorus, Sulfur, and Silicon 99:207–238

    Article  Google Scholar 

  36. Garofalini SH, Martin G (1994) J Phys Chem 98:1311–1316

    Article  CAS  Google Scholar 

  37. Wiens M, Bausen M, Natalio F, Link T, Schloßmacher U, Müller WEG (2009) Biomaterials 30:1648–1656

    Article  CAS  Google Scholar 

  38. Perry CC, Keeling-Tucker T (2000) J Biol Inorg Chem 5:537–550

    Article  CAS  Google Scholar 

  39. Müller WEG, Wang X, Burghard Z, Bill J, Krasko A, Boreiko A, Schloßmacher U, Schröder HC, Wiens M (2009) J Struct Biol 168:548–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinz C. Schröder or Werner E. G. Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(DOC 766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, H.C., Wiens, M., Schloßmacher, U. et al. Silicatein-Mediated Polycondensation of Orthosilicic Acid: Modeling of a Catalytic Mechanism Involving Ring Formation. Silicon 4, 33–38 (2012). https://doi.org/10.1007/s12633-010-9057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-010-9057-4

Keywords

Navigation