Skip to main content

Silicase, an Enzyme Which Degrades Biogenous Amorphous Silica: Contribution to the Metabolism of Silica Deposition in the Demosponge Suberites domuncula

  • Chapter
Silicon Biomineralization

Abstract

Two classes of the phylum Porifera, the Demospongiae and the Hexactinellida,produce hydrated, amorphous, and noncrystalline silica which they deposit in their spicules. In contrast, the third class of Porifera, the Calcarea, have a skeleton which is composed exclusively of calcite spicules. In Demospongiae the amorphous hydrated silica, similar to opal, is formed primarily intracellularly in a special type of cells, the sclerocytes (see Uriz et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong JM, Myers DV, Verpoorte JA, Edsall JT (1966) Purification and properties of human erythrocyte carbonic anhydrase. J Biol Chem 241:5137–5149

    PubMed  CAS  Google Scholar 

  • Bavestrello G, Arillo A, Benatti U, Cerrano C, Cattaneo-Vietti R, Cortesogno L, Gaggero L, Giovine M, Tonetti M, Sarà M (1995) Quartz dissolution by the sponge Chondrosia reniformis (Porifera,Demospongiae). Nature 378:374–376

    Article  CAS  Google Scholar 

  • Brasier MD (1992) Nutrient-enriched waters and the early skeletal fossil records. J Geol Soc(Lond) 149:621–629

    Article  CAS  Google Scholar 

  • Brasier M, Green O, Shields G (1997) Ediacarian sponge spicule clusters from southwest Mongolia and the origins of the Cambrian fauna. Geology 25:303–306

    Article  CAS  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  PubMed  CAS  Google Scholar 

  • Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (2000) Current protocols in protein science.Wiley, Chichester

    Google Scholar 

  • Cupp JR, McAlister-Henn L (1991) NAD+-dependent isocitrate dehydrogenase. Cloning,nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. J Biol Chem 266:22199–22205

    PubMed  CAS  Google Scholar 

  • Deitmer JM, Rose CR (1996) pH regulation and proton signaling by glial cells. Prog Neurobiol 48:73–103

    Article  PubMed  CAS  Google Scholar 

  • DeSantis L (2000) Preclinical overview of Brinzolamide. Surv Ophthal 44 [Suppl 2]:S119–S129

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP, ver. 3.5. Univ Washington, Seattle Fujikawa-Adachi K,Nishimori I,Taguchi T,Yuri K, Onishi S (1999) cDNA sequence,mRNA expression,and chromosomal localization of human carbonic anhydrase-related protein, CA-RP XI.Biochim Biophys Acta 1431:518–524

    Google Scholar 

  • Geigy Scientific Tables (1984) Physical chemistry - composition of blood, vol 3. Ciba-Geigy,Basel

    Google Scholar 

  • Hartman WD (1983) Modern and ancient Sclerospongiae. In: Broadhead TW (ed) Sponges and spongiomorphs: notes for a short course. University of Tennessee (Department of Geological Sciences). Stud Geol 7:115–129

    Google Scholar 

  • James NP, Gravestock DI (1990) Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology 37:455–480

    Article  Google Scholar 

  • Jones WC (1965) Photographic records of living oscular tubes of Leucosolenia variabilis. ¢ó.Irregular growth of the oscular tube. J Mar Biol Assoc UK 45:1–28

    Article  Google Scholar 

  • Kennish MJ (1994) Practical handbook of marine science. CRC Press, Boca Raton Kim YO, Koh HJ, Kim SK, Jo SH,Huh JW, Jeong KS, Lee IJ, Song BJ, Huh TL (1999) Identification and functional characterization of anovel,tissue-specific NAD+-dependent isocitrate dehydrogenase b subunit isoform. J Biol Chem 274:36866–36875

    Google Scholar 

  • Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 57–84

    Chapter  Google Scholar 

  • Krasko A, Batel R, Schröer HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  PubMed  CAS  Google Scholar 

  • Kruse M, Leys SP, Müller IM, Müller WEG (1998) Phylogenetic position of the Hexactinellida within the phylum Porifera based on amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728

    Article  PubMed  CAS  Google Scholar 

  • Mehl D, Müller I,Müller WEG (1998) Molecular biological and palaeontological evidence that Eumetazoa, including Porifera (sponges), are of monophyletic origin. In: Watanabe Y,Fusetani N (eds) Sponge science - multidisciplinary perspectives. Springer, Berlin Heidelberg New York, pp 133–156

    Google Scholar 

  • Müller WEG (1997) Origin of metazoan adhesion molecules and adhesion receptors as deduced from their cDNA analyses from the marine sponge Geodia cydonium. Cell Tissue Res 289:383–395

    Article  PubMed  Google Scholar 

  • Müller WEG (2001) How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp Biochem Physiol [A] 129:433–460

    Google Scholar 

  • Müller WEG, Brümmer F (1998) Herstellung von Primmorphe aus dissoziierten Zellen von Schwämen,Korallen und weiteren Invertebraten:Verfahren zur Kultivierung von Zellen von Schwämen und weiteren Invertebraten zur Produktion und Detektion von bioaktiven Substanzen, zur Detektion von Umweltgiften und zur Kultivierung dieser Tiere in Aquarien und im Freiland. Patent application AZ 198 24 384 [30.05.1998]

    Google Scholar 

  • Müller WEG, Zahn RK, Rijavec M, Britvic S, Kurelec B, Müller I (1979) Aggregation of sponge cells. The aggregation factor as a tool to establish species. Biochem System Ecol 7:49–55

    Article  Google Scholar 

  • Müller WEG, Zahn RK, Maidhof A (1982) Spongilla gutenbergiana n.sp.,ein Süβwasserschwamm aus dem Mittel-Eozän von Messel. Senckenbergiana Lethaea 63:465–472

    Google Scholar 

  • Müller WEG, Müller I, Zahn RK, Maidhof A (1984) Intraspecific recognition system in scleractinian corals: morphological and cytochemical description of the autolysis mechanism.J Histochem Cytochem 32:285–288

    Article  PubMed  Google Scholar 

  • Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Progr Ser 178:205–219

    Article  Google Scholar 

  • Müller WEG, Krasko A, Skorokhod A, Bünz C, Grebenjuk VA, Steffen R, Batel R, Müller IM, Schröder HC (2002a) Histocompatibility reaction in the sponge Suberites domuncula on tissue and cellular level: central role of the allograft inflammatory factor 1. Immunogenetics 54:48–58

    Article  Google Scholar 

  • Müller WEG, Lorenz B, Krasko A, Schröder HC (2002b) Silicatein-vermittelte Synthese von amorphen Silikaten und Siloxanen und ihre Verwendung. Offenlegungsschrift (Deutsches Patentamt);C 12 P3/00

    Google Scholar 

  • Nair SK, Calderone TL, Christianson DW, Fierke CA (1991) Altering the mouth of a hydrophobic pocket. Structure and kinetics of human carbonic anhydrase II mutants a t residue Val-121.J Biol Chem 266:17320-17325

    PubMed  CAS  Google Scholar 

  • Nelson DM, Tréguer P, Brezinski MA, Leynaert A, Qéguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  • Okamoto N, Fujikawa-Adachi K, Nishimori I, Taniuchi K, Onishi S (2001) cDNA sequence of human carbonic anhydrase-related protein CA-RP X and XI in human brain.Biochim Biophys Acta 1518:311–316

    Article  PubMed  CAS  Google Scholar 

  • PC/GENE (1995) Data Banks CD-ROM; Release 14.0. IntelliGenetics,Mountain View, CA

    Google Scholar 

  • Pomponi SA (1979) Ultrastructure and cytochemistry of the etching area of boring sponges. In:Lévi C, Boury-Esnault N (eds) Biologie des spongiaires, vol 291. Colloq Int CNRS, Paris,pp 319–323

    Google Scholar 

  • Racki G (1999) Silica-secreting biota and mass extinction: survival patterns and processes.Palaeogeogr Palaeoclimatol Palaeoecol 154:107–132

    Article  Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata.Mar Biol 21:144–162

    Article  Google Scholar 

  • Schwab DW, Shore RE (1971) Mechanism of internal stratification of siliceous spicules. Nature 232:501–502

    Article  PubMed  CAS  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    Article  Google Scholar 

  • Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the Lowermost Cambrian and a new facies reconstruction of the Yangtze Platform (China). Berliner Geowiss Abh (E) 9:293–329

    Google Scholar 

  • Sterling D, Reithmeier RAF, Casey JR (2001) A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–47894

    PubMed  CAS  Google Scholar 

  • Sun MK, Alkon DL (2002) Carbonic anhydrase gating of attention: memory therapy and enhancement.Trends Pharmac Sci 23:83–89

    Article  Google Scholar 

  • Taoka S, Tu C, Kister KA, Silverman DN (1994) Comparison of intra-and intermolecular proton transfer in human carbonic anhydrase II. J Biol Chem 269:17988–17992

    PubMed  CAS  Google Scholar 

  • Uriz MJ, Turon X, Becerrro MA (2000) Silica deposition in demosponges: spiculogenesis in Crambe crambe. Cell Tissue Res 301:299–309

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AP (1953) The elementary chemical composition of marine organisms. Sears Foundation,New Haven

    Google Scholar 

  • Volkmer-Ribeiro C, Motta JFM (1995) Spongillite forming sponges from south-western Minas Gerais State and neighboring areas with an indication for habitat preservation. Biosciencias (Porto Alegre) 3:145–169

    Google Scholar 

  • Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süβwasserschwamme (Spongillidae). Fischer, Stuttgart

    Google Scholar 

  • Wiens M, Koziol C, Hassanein HMA, Batel R, Müller WEG (1998) Expression of the chaperones 14–3-3 and HSP70 induced by PCB 1182,3’,4,4’,5-pentachlorobiphenyl in the marine sponge Geodia cydonium. Mar Ecol Prog Ser 165:14–3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröer, H.C. et al. (2003). Silicase, an Enzyme Which Degrades Biogenous Amorphous Silica: Contribution to the Metabolism of Silica Deposition in the Demosponge Suberites domuncula . In: Müller, W.E.G. (eds) Silicon Biomineralization. Progress in Molecular and Subcellular Biology, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55486-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55486-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62451-3

  • Online ISBN: 978-3-642-55486-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics