Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

Abstract

In this chapter we briefly look at possible future issues in fitness landscape research. We discuss challenges to a fitness landscape approach that result from recent experimental and theoretical findings about the information transfer in biological systems. In addition, we set out opportunities these results may open up and speculate about directions that landscape research may take. We summarize the discussion by laying out eight open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P.W.: More is different: Broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972)

    Article  Google Scholar 

  2. Bailey, N.W.: Evolutionary models of extended phenotypes. Trends in Ecology & Evolution 27, 561–569 (2012)

    Article  Google Scholar 

  3. Becks, L., Ellner, S.P., Jones, L.E., Hairston Jr., N.G.: The functional genomics of an eco–evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol. Lett. 15, 492–501 (2012)

    Article  Google Scholar 

  4. Borenstein, E., Meilijson, I., Ruppin, E.: The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. Jour. Evolut. Biology 19, 1555–1570 (2006)

    Article  Google Scholar 

  5. Boto, L.: Horizontal gene transfer in evolution: facts and challenges. Proc. R. Soc. B 277, 819–827 (2010)

    Article  Google Scholar 

  6. Brading, K., Castellani, E. (eds.): Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  7. Conway Morris, S.: The predictability of evolution: glimpses into a post-Darwinian world. Naturwissenschaften 96, 1313–1337 (2009)

    Article  Google Scholar 

  8. Conway Morris, S.: Evolution: like any other science it is predictable. Phil. Trans. R. Soc. B 365, 133–145 (2010)

    Article  Google Scholar 

  9. Crick, F.H.C.: Central dogma of molecular biology. Nature 227, 561–563 (1970)

    Article  Google Scholar 

  10. Culberson, J.C.: On the futility of blind search: An algorithmic view of “no free lunch”. Evolut. Comput. 6, 109–127 (1998)

    Article  Google Scholar 

  11. Deem, M.W.: Statistical mechanics of modularity and horizontal gene transfer. Annu. Rev. Condens. Matter Phys. 4, 287–311 (2013)

    Article  Google Scholar 

  12. Drossel, B.: Biological evolution and statistical physics. Adv. Phys. 50, 209–295 (2001)

    Article  Google Scholar 

  13. Droste, S., Jansen, T., Wegener, I.: Optimization with randomized search heuristics–the (A)NFL theorem, realistic scenarios, and difficult functions. Theor. Comp. Sci. 287, 131–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dufresne, F., Jeffery, N.: A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res. 19, 925–938 (2011)

    Article  Google Scholar 

  15. Eddy, S.: Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919–929 (2001)

    Article  Google Scholar 

  16. Flamm, C., Stadler, B.M.R., Stadler, P.F.: Generalized topologies: Hypergraphs, chemical reactions and biological evolution. In: Basak, S.C., Restrepo, G., Villaveces, J.L. (eds.) Advances in Mathematical Chemistry: With Applications to Chemoinformatics, Bioinformatics, Drug Discovery, and Predictive Toxicology, Bentham Publishers, Sharjah (in press, 2013), http://www.tbi.univie.ac.at/newpapers/pdfs/TBI-p-2012-9.pdf

  17. Gilbert, C., Cordaux, R.: Horizontal transfer and evolution of prokaryote transposable elements in eukaryotes. Genome Bio. Evol. 5, 822–832 (2013)

    Article  Google Scholar 

  18. Gillespie, J.H.: Molecular evolution over the mutational landscape. Evolution 38, 1116–1129 (1984)

    Article  Google Scholar 

  19. Gitchoff, P., Wagner, G.P.: Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism. Complexity 2, 37–43 (1996)

    Article  MathSciNet  Google Scholar 

  20. Goldenfeld, N., Woese, C.: Biology’s next revolution. Nature 445, 369 (2007)

    Article  Google Scholar 

  21. Goldenfeld, N., Woese, C.: Life is physics: Evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys. 2, 375–399 (2011)

    Article  Google Scholar 

  22. Gregory, T.R.: The Evolution of the Genome. Elsevier Academic Press, Burlington (2005)

    Google Scholar 

  23. Gregory, T.R.: Animal Genome Size Database, http://www.genomesize.com (accessed May 22, 2013)

  24. Hairston Jr., N.G., Ellner, S.P., Geber, M.A., Yoshida, T., Fox, J.A.: Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005)

    Article  Google Scholar 

  25. Holland, J.H.: Signals and Boundaries: Building Blocks for Complex Adaptive Systems. MIT Press, Cambridge (2012)

    Google Scholar 

  26. Huttegger, S.M., Mitteroecker, P.: Invariance and meaningfulness in phenotype spaces. Evol. Biol. 38, 335–351 (2011)

    Article  Google Scholar 

  27. Johnson, B.R., Lam, S.K.: Self-organization, natural selection, and evolution: Cellular hardware and genetic software. BioScience 60, 879–885 (2010)

    Article  Google Scholar 

  28. Lobkovsky, A.E., Wolf, Y.I., Koonin, E.V.: Predictability of evolutionary trajectories in fitness landscapes. PLoS Comput. Biol. 7(12), e1002302 (2011), doi:10.1371/journal.pcbi.1002302

    Google Scholar 

  29. Kauffman, S.A.: The Origin of Order: Self–Organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  30. Kauffman, S.A.: Investigations. Oxford University Press, New York (2002)

    Google Scholar 

  31. Keeling, P.J., Palmer, J.F.: Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008)

    Article  Google Scholar 

  32. Kirschner, M.W., Gerhart, J.C.: The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, New Haven (2005)

    Google Scholar 

  33. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Information Science 241, 148–163 (2013)

    Article  Google Scholar 

  34. McCandlish, D.M.: Visualizing fitness landscapes. Evolution 65, 1544–1558 (2011)

    Article  Google Scholar 

  35. Meyers, L.A., Bull, J.J.: Fighting change with change: adaptive variation in an uncertain world. Trends in Ecology & Evolution 17, 551–557 (2002)

    Article  Google Scholar 

  36. Mozhayskiy, V., Tagkopoulos, I.: Horizontal gene transfer dynamics and distribution of fitness effects during microbial in silico evolution. BMC Bioinformatics 13, S13-1–S13-17 (2012)

    Google Scholar 

  37. Noble, D.: Genes and causation. Phil. Trans. R. Soc. A 366, 3001–3015 (2008)

    Article  Google Scholar 

  38. Noble, D.: A biological relativity view of the relationships between genomes and phenotypes. Prog. Biophys. Mol. Biol. 111, 59–65 (2013)

    Article  Google Scholar 

  39. Park, J.M., Deem, M.W.: Phase diagrams of quasispecies theory with recombination and horizontal gene transfer. Theor. Popul. Biol. 70, 479–485 (2006)

    Article  Google Scholar 

  40. Parter, M., Kashtan, N., Alon, U.: Facilitated variation: How evolution learns from past environments to generalize to new environments. PLoS Comput. Biol. 4(11), e1000206 (2008), doi:10.1371/journal.pcbi.1000206

    Google Scholar 

  41. Pelletier, F., Garant, D., Hendry, A.P.: Eco-evolutionary dynamics. Phil. Trans. R. Soc. B 364, 1483–1489 (2009)

    Article  Google Scholar 

  42. Pellicer, J., Fay, M.F., Leitch, I.J.: The largest eukaryotic genome of them all? Bot. Jour. Linnean Soc. 164, 10–15 (2010)

    Article  Google Scholar 

  43. Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M., Tans, S.J.: Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007)

    Article  Google Scholar 

  44. Poli, R., Vanneschi, L., Langdon, W.B., McPhee, N.F.: Theoretical results in genetic programming: the next ten years? Genet. Program Evolvable Mach. 11, 285–320 (2010)

    Article  Google Scholar 

  45. Prügel–Bennett, A.: Symmetry breaking in population-based optimization. IEEE Trans. Evolut. Comp. 8, 63–79 (2004)

    Article  Google Scholar 

  46. Ray, T.S.: Is it alive or is it GA? In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 527–534. Morgan Kauffman, San Mateo (1991)

    Google Scholar 

  47. Raz, Y., Tannenbaum, E.: The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments. Genetics 185, 327–337 (2010)

    Article  Google Scholar 

  48. Rogers, A., Prügel–Bennett, A., Jennings, N.R.: Phase transitions and symmetry breaking in genetic algorithms with crossover. Theor. Comp. Sci. 358, 121–141 (2006)

    Article  MATH  Google Scholar 

  49. Saito, N., Ishihara, S., Kaneko, K.: Evolution of genetic redundancy: The relevance of complexity in genotype-phenotype mapping. Submitted to Europhys. Lett. (2013), http://arxiv.org/pdf/1302.2234v1.pdf

  50. Sakata, A., Hukushima, K., Kaneko, K.: Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution. Europhys. Lett. 99, 68004 (2012)

    Article  Google Scholar 

  51. Sayama, H., Kaufman, L., Bar-Yam, Y.: Symmetry breaking and coarsening in spatially distributed evolutionary processes including sexual reproduction and disruptive selection. Phys. Rev. E 62, 7065–7069 (2000)

    Article  Google Scholar 

  52. Schaack, S., Gilbert, C., Feschotte, C.: Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends in Ecology & Evolution 25, 537–546 (2010)

    Article  Google Scholar 

  53. Schoener, T.W.: The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011)

    Article  Google Scholar 

  54. Schuster, P.: A revival of the landscape paradigm: Large scale data harvesting provides access to fitness landscapes. Complexity 17, 6–10 (2012)

    Article  Google Scholar 

  55. Shakhnovich, E.I.: Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem. Rev. 106, 1559–1588 (2006)

    Article  Google Scholar 

  56. Shapiro, J.A.: Revisiting the central dogma in the 21st century. N.Y. Acad. Sci. 1178, 6–28 (2009)

    Article  Google Scholar 

  57. Shapiro, J.A.: Mobile DNA and evolution in the 21st century. Mobile DNA 1, 1–14 (2010)

    Article  Google Scholar 

  58. Shpak, M., Wagner, G.P.: Asymmetry of configuration space induced by unequal crossover: implications for a mathematical theory of evolutionary innovation. Artificial Life 6, 25–43 (2000)

    Article  Google Scholar 

  59. Stadler, P.F., Wagner, G.P.: The algebraic theory of recombination spaces. Evol. Computation 5, 241–275 (1998)

    Article  Google Scholar 

  60. Stadler, P.F., Seitz, R., Wagner, G.P.: Population dependent Fourier decomposition of fitness landscapes over recombination spaces: evolvability of complex characters. Bull. Math. Biol. 62, 399–428 (2000)

    Article  Google Scholar 

  61. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comm. Theor. Biol. 8, 389–431 (2003)

    Article  Google Scholar 

  62. Stadler, B.M.R., Stadler, P.F., Wagner, G.P., Fontana, W.: The topology of the possible: Formal spaces underlying patterns of evolutionary change. J. Theor. Biology 213, 241–274 (2001)

    Article  MathSciNet  Google Scholar 

  63. Syvanen, M.: Cross-species gene transfer: implications for a new theory of evolution. J. Theor. Biology 112, 333–343 (1985)

    Article  Google Scholar 

  64. Syvanen, M.: Evolutionary implications of horizontal gene transfer. Ann. Rev. Gen. 46, 341–358 (2012)

    Article  Google Scholar 

  65. Szendro, I.G., Schenk, M.F., Franke, J., Krug, J., de Visser, J.A.G.M.: Quantitative analyses of empirical fitness landscapes. Jour. Stat. Mech., P01005 (2013), dx.doi.org/10.1088/1742-5468/2013/01/P01005

    Google Scholar 

  66. Tanzer, A., Riester, M., Hertel, J., Bermudez-Santana, C.I., Gorodkin, J., Hofacker, I.L., Stadler, P.F.: Evolutionary genomics of microRNAs and their relatives. In: Caetano Anolles, G. (ed.) Evolutionary Genomics and Systems Biology, pp. 295–327. Wiley–Blackwell, Hoboken (2010)

    Chapter  Google Scholar 

  67. Thompson, J.N.: Rapid evolution as an ecological process. Trends in Ecology & Evolution 13, 329–332 (1989)

    Article  Google Scholar 

  68. Wagner, A.: Robustness and Evolvability in Living Systems. Princeton University Press, Princeton (2007)

    Google Scholar 

  69. Walker, S.I., Davies, P.C.W.: The algorithmic origins of life. J. Royal Society Interface 10, 20120869 (2013), http://arxiv.org/abs/1207.4803

    Article  Google Scholar 

  70. Wallau, G.L., Ortiz, M.F., Loreto, E.L.S.: Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Bio. Evol. 4, 801–811 (2012)

    Google Scholar 

  71. Weinreich, D.M., Watson, R.A., Chao, L.: Sign epistasis and constraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005)

    Google Scholar 

  72. Weinreich, D.M., Sindi, S., Watson, R.A.: Finding the boundary between evolutionary basins of attraction, and implications for Wright’s fitness landscape analogy. Jour. Stat. Mech., P01001 (2013), doi:10.1088/1742-5468

    Google Scholar 

  73. Whitley, D., Watson, J.P.: Complexity theory and the no free lunch theorem. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 317–339. Springer, New York (2005)

    Chapter  Google Scholar 

  74. Wiles, J., Tonkes, B.: Hyperspace geography: Visualizing fitness landscapes beyond 4D. Artificial Life 12, 211–216 (2006)

    Article  Google Scholar 

  75. Wills, P.R.: Informed generation: Physical origin and biological evolution of genetic codescript interpreters. J. Theor. Biology 257, 345–358 (2009)

    Article  MathSciNet  Google Scholar 

  76. Wilson, A.J., Nussey, D.H.: What is individual quality? An evolutionary perspective. Trends in Ecology & Evolution 25, 207–214 (2010)

    Article  Google Scholar 

  77. Win, M.N., Liang, J.C., Smolke, C.D.: Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009)

    Article  Google Scholar 

  78. Wolf, J.B., Wade, M.J.: On the assignment of fitness to parents and offspring: whose fitness is it and when does it matter? Jour. Evolut. Biol. 14, 347–356 (2001)

    Article  Google Scholar 

  79. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comp. 1, 67–82 (1997)

    Article  Google Scholar 

  80. Zeldovich, K.B., Shakhnovich, E.I.: Understanding protein evolution: from protein physics to Darwinian selection. Annu. Rev. Phys. Chem. 59, 105–127 (2008)

    Article  Google Scholar 

  81. Zhaxybayeva, O., Ford Doolittle, W.: Lateral gene transfer. Current Biology 21, R242–R246 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, H. (2014). Frontiers of Fitness Landscapes: A Summary of Open Questions. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics