Skip to main content

Advertisement

Log in

Invariance and Meaningfulness in Phenotype spaces

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Mathematical spaces are widely used in the sciences for representing quantitative and qualitative relations between objects or individuals. Phenotype spaces—spaces whose elements represent phenotypes—are frequently applied in morphometrics, evolutionary quantitative genetics, and systematics. In many applications, several quantitative measurements are taken as the orthogonal axes of a Euclidean vector space. We show that incommensurable units, geometric dependencies between measurements, and arbitrary spacing of measurements do not warrant a Euclidean geometry for phenotype spaces. Instead, we propose that most phenotype spaces have an affine structure. This has profound consequences for the meaningfulness of biological statements derived from a phenotype space, as they should be invariant relative to the transformations determining the structure of the phenotype space. Meaningful geometric relations in an affine space are incidence, linearity, parallel lines, distances along parallel lines, intermediacy, and ratios of volumes. Biological hypotheses should be phrased and tested in terms of these fundamental geometries, whereas the interpretation of angles and of phenotypic distances in different directions should be avoided. We present meaningful notions of phenotypic variance and other statistics for an affine phenotype space. Furthermore, we connect our findings to standard examples of morphospaces such as Raup’s space of coiled shells and Kendall’s shape space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. When an underlying empirical structure is unordered, the use of an ordered field would contain more structure than its empirical counterpart and may lead to unwarranted conclusions drawn from the mathematical representation.

  2. A vector space together with a distance measure is a special case of a metric space. A metric space does in general not have to be a vector space.

References

  • Adams, D., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology, 71(9), 5–16.

    Article  Google Scholar 

  • Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution, 62, 2451–2461.

    Article  PubMed  Google Scholar 

  • Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32.

    Article  PubMed  CAS  Google Scholar 

  • Blackith, R. E., & Reyment, R. A. (1971). Multivariate morphometrics. New York: Academic Press.

    Google Scholar 

  • Bookstein, F., Chernoff, B., Elder, R. L., Humphries, J. M., Jr., Smith, G. R., & Strauss, R. E. (1985). Morphometrics in evolutionary biology: The geometry of size and shape change, with examples from fishes. Academy of Sciences of Philadelphia Special Publication 15.

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Busemann, H. (1955). The geometry of geodesics. New York: Academic Press.

    Google Scholar 

  • Cain, A. J., & Harrison, G. A. (1960). Phyletic weighting. Proceedings of the Zoological Society London, 135, 1–31.

    Article  Google Scholar 

  • Coquerelle, M., Bookstein, F. L., Braga, J., Halazonetis, D. J., Weber, G. W., & Mitteroecker, P. (in press). Sexual dimorphism of the human mandible and its association with dental development. American Journal of Physical Anthropology.

  • Dryden, I. L., & Mardia, K. (1998). Statistical shape analysis. New York: Wiley.

    Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Essex, UK: Longman.

    Google Scholar 

  • Fontana, W., & Schuster, P. (1998a). Continuity in evolution: On the nature of transitions. Science, 280, 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  • Fontana, W., & Schuster, P. (1998b). Shaping space: The possible and the attainable in RNA genotype-phenotype mapping. Journal of Theoretical Biology, 194, 491–515.

    Article  PubMed  CAS  Google Scholar 

  • Foote, M. (1997). The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129–152.

    Article  Google Scholar 

  • Frank, S. A., & Smith, D. E. (2010). Measurement invariance, entropy, and probability. Entropy, 12, 289–303.

    Article  Google Scholar 

  • Gunz, P., Bookstein, F. L., Mitteroecker, P., Stadlmayr, A., Seidler, H., & Weber, G. W. (2009). Early modern human diversity suggests subdivided population structure and a complex out-of-africa scenario. Proceedings of the National Academy of Sciences, USA, 106(15), 6094–6098.

  • Hall, B. K. (2005). Bones and cartilage: Developmental skeletal biology. San Diego: Academic Press.

    Google Scholar 

  • Hallgrimsson, B., & Hall, B. K. (2005). Variation: A central concept in biology. New York: Elsevier.

    Google Scholar 

  • Hilbert, D. (1899). Grundlagen der Geometrie. Stuttgart: Teubner.

    Google Scholar 

  • Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Maß. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikalische Classe, 53, 1–64.

    Google Scholar 

  • Jolicoeur, P. (1963). The multivariate generalization of the allometry equation. Biometrics, 19, 497–499.

    Article  Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, Procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society, 16(2), 81–121.

    Article  Google Scholar 

  • Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Verlag von Andreas Deichert.

    Google Scholar 

  • Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement vol I. Additive and polynomial representations. San Diego, CA: Academic Press (reprinted by Dover 2007).

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain-body size allometry. Evolution, 33, 402–416.

    Article  Google Scholar 

  • Lele, S. R., & McCulloch, C. E. (2002). Invariance, identifiability, and morphometrics. Journal of the American Statistical Association, 97, 796–806.

    Article  Google Scholar 

  • Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1990). Foundations of measurement vol III. Representation, axiomatization, and invariance. San Diego, CA: Academic Press (reprinted by Dover 2007).

  • Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Mahalanobis, P. C. (1936). On a generalised distance in statistics. Proceedings of the National Institute of Science, India, 2, 49–55.

  • Marcus, L. F. (1990). Traditional morphometrics. In F. J. Rohlf & F. L. Bookstein (Eds.), Proceedings of the Michigan morphometrics workshop (pp. 77–122). Ann Arbor, Michigan: Univ. Michigan Museums.

  • Marcus, L. F., Hingst-Zaher, E., & Zaher, H. (2000). Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix, Italian J. Mammology, 11(1), 27–47.

    Google Scholar 

  • Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. London: Academic Press.

    Google Scholar 

  • Maynard Smith, J. (1970). Natural selection and the concept of a protein space. Nature, 225, 563–564.

    Article  Google Scholar 

  • McGhee, G. R. (1999). Theoretical morphology: The concept and its applications. New York: Columbia University Press.

    Google Scholar 

  • Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology, 36, 377–385.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2009). The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution, 63(3), 727–737.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2011). Classification, linear discrimination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38, 100–114.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., & Bookstein, F. L. (2005). Heterochrony and geometric morphometrics: A comparison of cranial growth in pan paniscus versus pan troglodytes. Evolution & Development, 7(3), 244–258.

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46, 679–697.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Huttegger, S. M. (2009). The concept of morphospaces in evolutionary and developmental biology: Mathematics and metaphors. Biological Theory, 4(1), 54–67.

    Article  Google Scholar 

  • Narens, L. (2002). Theories of meaningfulness. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Pie, M. R. & Weitz, J. S. (2005). A null model of morphospace occupation. American Naturalist, 166(1), E1–13.

    Article  PubMed  Google Scholar 

  • Polly, P. D., & McLeod, N. (2008). Locomotion in fossil carnivora: An application of eigensurface analysis for morphometric comparison of 3D surfaces. Palaeontologia Electronica, 11(2), 10A:13p.

    Google Scholar 

  • Raup, D. M. (1966). Geometric analysis of shell coiling: General problems. Journal of Paleontology, 40, 1178–1190.

    Google Scholar 

  • Raup, D. M., & Michelson, A. (1965). Theoretical morphology of the coiled shell. Science, 147, 1294–1295.

    Article  PubMed  CAS  Google Scholar 

  • Rohlf, F. J. (1999). Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16, 197–223.

    Article  Google Scholar 

  • Rohlf, F. J., & Sokal, R. (1965). Coefficients of correlation and distance in numerical taxonomy. University of Kansas Science Bulletin, 45, 3–27.

    Google Scholar 

  • Roy, K., & Foote, M. (1997). Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution, 12(7), 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer, K., Lauc, T., Mitteroecker, P., Gunz, P., & Bookstein, F. L. (2006). Dental arch asymmetry in an isolated Adriatic community. American Journal of Physical Anthropology, 129(1), 132–142.

    Article  PubMed  Google Scholar 

  • Schindel, D. E. (1990). Unoccupied morphospace and the coiled geometry of gastropods: Architectural constraints or geometric covariation? In R. A. Ross, & W. D. Allmon (Eds.), Causes of Evolution (pp. 270–304). Chicago: University of Chicago Press.

    Google Scholar 

  • Slice, D. E. (2001). Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Systematic Biology, 50(1), 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy: The principles and practice of numerical classification. San Francisco: W. H. Freeman.

    Google Scholar 

  • Sokal, R. (1961). Distance as a measure of taxonomic similarity. Systematic Zoology, 10, 70–79.

    Article  Google Scholar 

  • Sokal, R. R., & Sneath, P. H. A. (1963). Principles of numerical taxonomy. San Francisco: W. H. Freeman.

    Google Scholar 

  • Stadler, B. M. R., Stadler, P. F., Shpak, M., & Wagner, G. P. (2002). Recombination spaces, metrics, and pretopologies. Zeitschrift für physikalische Chemie, 216, 217–274.

    Article  CAS  Google Scholar 

  • Stadler, B. M. R., Stadler, P. F., Wagner, G. P., & Fontana, W. (2001). The topology of the possible: Formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology, 213, 241–274.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.

    Article  Google Scholar 

  • Suppes, P., Krantz, D. H., Luce, R. D., & Tversky, A. (1989). Foundations of measurement Vol II. Geometrical, threshold and probabilistic representations. San Diego, CA: Academic Press (reprinted by Dover 2007).

  • von Helmholtz, H. (1887). Zählen und Messen erkenntnistheoretisch betrachtet. Leipzig: Philosophische Aufsätze Eduard Zeller gewidmet.

  • von Neumann, J., Morgenstern, O. (1944). Theory of games and economic behavior. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wills, M. A. (2001). Morphological disparity: A primer. In J. M. Adrain, G. D. Edgecombe, & B. S. Lieberman (Eds.), Fossils, phylogeny, and form—An analytical approach. New York: Kluwer.

    Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the sixth international congress of genetics, 1, 356–366.

  • Zelditch, M. L., Swiderski, D., Sheets, D. S., & Fink, W. L. (2004). Geometric morphometrics for biologists. San Diego: Elsevier.

    Google Scholar 

Download references

Acknowledgments

We thank Fred Bookstein, Steve Frank, Philipp Gunz, Duncan Luce, Louis Narens, Günther Wagner, and two anonymous reviewers for helpful comments and for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon M. Huttegger.

Appendix: Affine Invariant Statistics

Appendix: Affine Invariant Statistics

Incidence relations, averages, and also distances relative to a statistical distribution are affine invariant. Consequently, many statistical tests can be applied to data with an affine structure. For example, the classical test to compare multivariate means is based on the Hotelling’s T 2 statistic

$$ T^2=n(\bar{{\mathbf{x}}}-\varvec{\mu}_0)^T {\mathbf{S}}^{-1}(\bar{{\mathbf{x}}}-\varvec{\mu}_0), $$

where n is the number of cases, \(\bar{{\bf x}}\) a p-dimensional vector representing the estimated mean, \(\varvec{\mu}_{0}\) the hypothesized mean, and S is a p × p sample covariance matrix. If x is a random variable with a multivariate normal distribution and S has a Wishart distribution with m = n − 1 degrees of freedom and is independent of x, then T 2 has a Hotelling’s T 2 distribution with the parameters p and m. The Hotelling’s T 2 statistic is equal to the squared Mahalanobis distance (11) multiplied by n . We have shown in (12) that Mahalanobis distance is invariant to affine transformation and hence T 2 is affine invariant too. It follows that multivariate means can be tested meaningfully even if their underlying geometric structure is affine instead of Euclidean.

An extension of the Hotelling’s T 2 distribution is the Wilks’ lambda distribution. For two covariance matrices \(\mathbf{S}_1\) and \( \mathbf{S}_2\) with Wishart distributions of m and n degrees of freedom, Wilks lambda is

$$ \Uplambda=\frac{\det({\mathbf{S}}_1)}{\det({\mathbf{S}}_1+{\mathbf{S}}_2)}= \frac{1}{\det({\mathbf{I}}+{\mathbf{S}}_1^{-1}{\mathbf{S}}_2)}=\prod\left(\frac{1}{1+ \lambda_i}\right)\sim\Uplambda(p,m,n), $$

where I is the identity matrix and λ i is the ith eigenvalue of \(\mathbf{S}_1^{-1}\mathbf{S}_2. \) In several likelihood ratio tests (e.g., in the context of MANOVA) \(\mathbf{S}_1\) is the error variance and \(\mathbf{S}_2\) the variance explained by some model. As shown in (11), the eigenvalues of \(\mathbf{S}_1^{-1}\mathbf{S}_2\) are equal to the eigenvalues of \((\mathbf{A}^T \mathbf{S}_1\mathbf{A})^{-1}\mathbf{A}^T\mathbf{S}_2 \mathbf{A}, \) so that \(\Uplambda\) is affine invariant.

For the likelihood ratio test of homogeneity of covariance matrices, i.e., of H 0: \(\varvec{\Upsigma}_1=\varvec{\Upsigma}_2=\cdots=\varvec{\Upsigma}_k, \) the maximum likelihood estimate of \(\varvec{\Upsigma}_i\) is \(\mathbf{S}=n^{-1} \sum n_i \mathbf{S}_i\) under H 0 and \(\mathbf{S}_i \) under the alternative, where n i is the sample size of the ith group and n = ∑ n i . The likelihood ratio

$$ - 2\,\log \,\lambda _{a} = \sum\limits_{{i = 1}}^{k} {n_{i} } \log \det (S_{i}^{{ - 1}} S), $$

has an asymptotic χ2 distribution with \(\frac{1}{2} p(p+1)(k-1)\) degrees of freedom (Mardia et al. 1979, p. 140). As the eigenvalues of \( \mathbf{S}_i^{-1}\mathbf{S}\) are affine invariant (11), this test is meaningful also for data with an affine structure. Similarly, the metric for covariance matrices

$$ d_{cov}({{\mathbf{S}}_1,{\mathbf{S}}_2})=\sqrt{\sum_{i=1}^{p}(\rm{log} \;\lambda_i)^2}, $$

where λ i is the ith eigenvalues of \(\mathbf{S}_2^{-1} \mathbf{S}_1, \) is invariant to affine transformation (Mitteroecker and Bookstein 2009).

For the multivariate multiple regression of \(\mathbf{Y}\) on \(\mathbf{Z}, \) the least squares estimates of the regression coefficients are given by \( \varvec{\beta}=(\mathbf{Z}^T \mathbf{Z})^{-1}\mathbf{Z}^T \mathbf{Y}\) and the predicted values are \(\hat{\mathbf{Y}}=\mathbf{Z} \varvec{\beta}. \) Affine transformation of the predictors \(\mathbf{Z}\) has no affect on the prediction because

$$ \begin{aligned} \hat{{\mathbf{Y}}}&={\mathbf{Z A}} ({\mathbf{A}}^T {\mathbf{Z}}^T {\mathbf{Z A}})^{-1}{\mathbf{A}}^T {\mathbf{Z}}^T {\mathbf{Y}}\\ &={\mathbf{Z A A}}^{-1} ({\mathbf{Z}}^T {\mathbf{Z}})^{-1} ({\mathbf{A}}^T)^{-1} {\mathbf{A}}^T {\mathbf{Z}}^T {\mathbf{Y}}\\ &={\mathbf{Z}} ({\mathbf{Z}}^T {\mathbf{Z}})^{-1}{\mathbf{Z}}^T {\mathbf{Y}}. \end{aligned} $$

As Fisher’s linear discriminant function is computationally equivalent to a multiple regression of a group variable on the phenotypic variables, the success of linear discrimination is unaffected by affine transformations (see Mitteroecker and Bookstein 2011, for an explicit proof). When the dependent variables \(\mathbf{Y}\) are transformed into \(\mathbf{YA}, \) the predicted values result from the same transformation \(\hat{\mathbf{Y}}\mathbf{A}=\mathbf{Z} (\mathbf{Z}^T \mathbf{Z})^{-1}\mathbf{Z}^T \mathbf{Y A}. \)

We have argued that only ratios of generalized variance (determinant of the covariance matrix) are affine invariant, whereas generalized variance itself and also total variance (trace of the covariance matrix) and ratios of total variance are affected by affine transformations. We demonstrate this here by an example. Consider two covariance matrices

$$ {\mathbf{S}}_1=\left(\begin{array}{cc}2.3 & 1.2 \\ 1.2 & 1.8\end{array}\right), {\mathbf{S}}_2=\left(\begin{array}{cc}2.1 & 0.6 \\ 0.6 & 2.4\end{array}\right) $$

and the transformation matrix

$$ {\mathbf{A}}=\left(\begin{array}{cc}0.8 & -0.3 \\ 0.2 & 1.2\end{array}\right). $$

The total variance of \(\mathbf{S}_1\) is \(\mathrm{Tr}(\mathbf{S}_1)=4.10\) and that of the transformed data \(\mathrm{Tr}(\mathbf{A}^T \mathbf{S}_1 \mathbf{A})=3.86, \) and similarly for the generalized variances \(\mathrm{Det}(\mathbf{S}_1)=2.70\) and \(\mathrm{Det}(\mathbf{A}^T \mathbf{S}_1 \mathbf{A})=2.81. \) The ratios of total variance are \(\mathrm{Tr}(\mathbf{S}_1)/\mathrm{Tr}(\mathbf{S}_2)=0.91\) and \(\mathrm{Tr}(\mathbf{A}^T \mathbf{S}_1 \mathbf{A})/\mathrm{Tr}(\mathbf{A}^T \mathbf{S}_2 \mathbf{A})=0.80, \) whereas the ratio of the generalized variance is affine invariant: \( \mathrm{Det}(\mathbf{S}_1) / \mathrm{Det}(\mathbf{S}_2)=\mathrm{Det}(\mathbf{A}^T \mathbf{S}_1 \mathbf{A})/\mathrm{Det}(\mathbf{A}^T \mathbf{S}_2 \mathbf{A})=0.58. \) Ratios of total variance are affine invariant only if \(\mathbf{S}_2=k\mathbf{S}_1.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huttegger, S.M., Mitteroecker, P. Invariance and Meaningfulness in Phenotype spaces. Evol Biol 38, 335–351 (2011). https://doi.org/10.1007/s11692-011-9123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9123-x

Keywords

Navigation