Skip to main content

The Role of Blood and Plasma Viscosity in Restoring Oxygen Delivery Capacity

  • Chapter
  • First Online:
Hemoglobin-Based Oxygen Carriers as Red Cell Substitutes and Oxygen Therapeutics

Abstract

It is a generalized perception that blood products are needed when oxygen (O2) delivery capacity is jeopardized by the decrease of blood’s intrinsic O2 carrying capacity due to the decrease of hematocrit (Hct) or blood hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler S, Huang H (2002) Impaired regulation of renal oxygen consumption in spontaneously hypertensive rats. J Am Soc Nephrol 13:1788–1794

    Article  Google Scholar 

  • Bolaños JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

    Article  Google Scholar 

  • Bouskela E, Grampp W, Mellander S (1990) Effects of hypertonic NaCl solution on microvascular haemodynamics in normo- and hypovolaemia. Acta Physiol Scand 140:85–94

    Article  Google Scholar 

  • Bunn F, Roberts I, Tasker R, and Akpa E (2004) Hypertonic versus near isotonic crystalloid for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev CD002045

    Google Scholar 

  • Cabrales P, Tsai AG, Frangos JA, Briceno JC, Intaglietta M (2004a) Oxygen delivery and consumption in the microcirculation after extreme hemodilution with perfluorocarbons. Am J Physiol Heart Circ Physiol 287:H320–H330

    Article  Google Scholar 

  • Cabrales P, Tsai AG, Intaglietta M (2004b) Hyperosmotic-hyperoncotic vs. hyperosmotic-hyperviscous small volume resuscitation in hemorrhagic shock. Shock 22:431–437

    Article  Google Scholar 

  • Cabrales P, Tsai AG, Intaglietta M (2004c) Microvascular pressure and functional capillary density in extreme hemodilution with low and high plasma viscosity expanders. Am J Physiol 287:H363–H373

    Google Scholar 

  • Cabrales P, Intaglietta M, Tsai AG (2005a) Increase plasma viscosity sustains microcirculation after resuscitation from hemorrhagic shock and continuous bleeding. Shock 23:549–555

    Google Scholar 

  • Cabrales P, Nacharaju P, Manjula BN, Tsai AG, Acharya SA, Intaglietta M (2005b) Early difference in tissue pH and microvascular hemodynamics in hemorrhagic shock resuscitation using polyethylene glycol-albumin- and hydroxyethyl starch-based plasma expanders. Shock 24:66–73

    Article  Google Scholar 

  • Cabrales P, Tsai AG, Intaglietta M (2005c) Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. Am J Physiol 288:H1708–H1716

    Google Scholar 

  • Cabrales P, Tsai AG, Winslow RM, Intaglietta M (2005d) Extreme hemodilution with PEG-hemoglobin vs. PEG-albumin. Am J Physiol Heart Circ Physiol 289:H2392–H2400

    Article  Google Scholar 

  • Cabrales P, Tsai AG, Winslow RM, Intaglietta M (2005e) Extreme hemodilution with PEG-hemoglobin vs. PEG-albumin. Am J Physiol 289:H2392–H2400

    Google Scholar 

  • Cabrales P, Tsai AG, Intaglietta M (2007a) Hemorrhagic shock resuscitation with carbon monoxide saturated blood. Resuscitation 72:306–318

    Article  Google Scholar 

  • Cabrales P, Tsai AG, Intaglietta M (2007b) Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock 27:380–389

    Article  Google Scholar 

  • Cabrales P, Tsai AG, Intaglietta M (2008) Balance between vasoconstriction and enhanced oxygen delivery. Transfusion 48:2087–2095

    Article  Google Scholar 

  • Chatpun S, Cabrales P (2010a) Cardiac mechanoenergetic cost of elevated plasma viscosity after moderate hemodilution. Biorheology 47:225–237

    Google Scholar 

  • Chatpun S, Cabrales P (2010b) Effects of plasma viscosity modulation on cardiac function during moderate hemodilution. Asian J Transfus Sci 4:102–108

    Article  Google Scholar 

  • Chen RYZ, Carlin RD, Simchon S, Jan K-M, Chien S (1989) Effects of dextran-induced hyperviscosity on regional blood flow and hemodynamics in dogs. Am J Physiol 256:H898–H905

    Google Scholar 

  • Cotter G, Moshkovitz Y, Milovanov O, Salah A, Blatt A, Krakover R, Vered Z, Kaluski E (2002) Acute heart failure: a novel approach to its pathogenesis and treatment. Eur J Heart Fail 4:227–234

    Article  Google Scholar 

  • Cryer HM, Gosche J, Harbrecht J, Anigian G, Garrison N (2005) The effect of hypertonic saline resuscitation on responses to severe hemorrhagic shock by the skeletal muscle, intestinal, and renal microcirculation systems: seeing is believing. Am J Surg 190:305–313

    Article  Google Scholar 

  • De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, Dobbe I, Ince C (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101

    Article  Google Scholar 

  • de Wit C, Schäfer C, von Bismark P, Bolz S, Pohl U (1997) Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo. Pflügers Arch 434:354–361

    Article  Google Scholar 

  • Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS (2009) Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology 24:107–116

    Article  Google Scholar 

  • Ertesvåg H, Høidal HK, Schjerven H, Glærum Svanem BI, Valla S (1999) Mannurunan C-5-epimerases and their application for in vitro and in vivo design of new alginates useful in biotechnology. Metab Eng 1:262–269

    Google Scholar 

  • Ewald RA, Anderson P, Williams HL, Crosby WH (1964) Effects of intravenous infusions of feather keratin: Preliminary characterization and evaluation as a plasma expander. Proc Soc Exp Biol Med 115:130–133

    Article  Google Scholar 

  • Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production in cultured human endothelial cells. Science 227:1477–1479

    Article  Google Scholar 

  • Frangos JA, Huang TY, Clark CB (1996) Steady shear and step changes in shear stimulate endothelium via independent mechanisms—Superposition of transient and sustained nitric oxide production. Biochem Biophy Res Comm 224:660–665

    Article  Google Scholar 

  • Georgakopoulos D, Mitzner WA, Chen CH, Byrne BJ, Millar HD, Hare JM, Kass DA (1998) In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry. Am J Physiol 274:H1416–H1422

    Google Scholar 

  • Gladwin MT, Schechter AN, Kim-Shapiro DB, Patel RP, Hogg N, Shiva S, Cannon RO 3rd, Kelm M, Wink DA, Espey MG, Oldfield EH, Pluta RM, Freeman BA, Lancaster JR Jr, Feelisch M, Lundberg JO (2005) The emerging biology of the nitrite anion. Nat Chem Biol 1:308–314

    Article  Google Scholar 

  • Grabowski EF, Jaffe EA, Weksler BB (1985) Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med 105:36–43

    Google Scholar 

  • Herrera MD, Mingorance C, Rodriguez–Rodriguez R, and Alvarez de Sotomayor M (2010) Endothelial dysfunction and Aging: an update. Ageing Res Rev 9:142–152

    Google Scholar 

  • Intaglietta M (1989) Microcirculatory effects of hemodilution: background and analysis. In: Tuma RF, White JV, Messmer K, München W (eds.) The Role of hemodilution in optimal patient care. Zuckschwerdt Verlag, pp 21–41

    Google Scholar 

  • Kerger H, Saltzman DJ, Menger MD, Messmer K, Intaglietta M (1996) Systemic and subcutaneous microvascular pO2 dissociation during 4-h hemorrhagic shock in conscious hamsters. Am J Physiol 270:H827–H836

    Google Scholar 

  • Koller A, Kaley G (1990) Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ Res 67:529–534

    Article  Google Scholar 

  • Krieter H, Brückner UB, Kafaliakis F, Messmer K (1995) Does colloid induced plasma hyperviscosity in haemodilution jeopardize perfusion and oxygenation of vital organs? Acta Anaest Scand 39:244–326

    Google Scholar 

  • Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2010) Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med 48:342–347

    Article  Google Scholar 

  • Lipowsky HH, Firrell JC (1986) Microvascular hemodynamics during systemic hemodilution and hemoconcentration. Am J Physiol 250:H908–H922

    Google Scholar 

  • Lui FE, Kluger R (2009) Enhancing nitrite reductase activity of modified hemoglobin: bis-tetramers and their PEGylated derivatives. Biochemistry 48:11912–11919

    Article  Google Scholar 

  • Lui FE, Dong P, Kluger R (2008) Polyethylene glycol conjugation enhances the nitrite reductase activity of native and cross-linked hemoglobin. Biochemistry 47:10773–10780

    Article  Google Scholar 

  • Lundberg JO, Govoni M (2004) Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med 37:395–400

    Article  Google Scholar 

  • Martini J, Cabrales P, K A, Acharya SA, Intaglietta M, and Tsai AG (2008) Survival time in severe hemorrhagic shock after perioperative hemodilution is longer with PEG-conjugated human serum albumin than with HES 130/0.4: a microvascular perspective. Crit Care 12:R54

    Article  Google Scholar 

  • Mazzoni MC, Borgström P, Intaglietta M, Arfors KE (1990) Capillary narrowing in hemorrhagic shock is rectified by hyperosmotic saline-dextran reinfusion. Circ Shock 31:407–418

    Google Scholar 

  • Messmer K, Sunder-Plassman L, Klövekorn WP, and Holper K (1972) Circulatory significance of hemodilution: Rheological changes and limitations. In: Karger, Basel (eds) Advances in microcirculation, pp 1–77

    Google Scholar 

  • Michelson E (1968) Anaphylactic reaction to dextrans. N Engl J Med 278:552

    Article  Google Scholar 

  • Mirhashemi S, Ertefai S, Messmer K, Intaglietta M (1987a) Model analysis of the enhancement of tissue oxygenation by hemodilution due to increased microvascular flow velocity. Microvasc Res 34:290–301

    Article  Google Scholar 

  • Mirhashemi S, Messmer K, Intaglietta M (1987b) Tissue perfusion during normovolemic hemodilution investigated by a hydraulic model of the cardiovascular system. Int J Microcirc Clin Exp 6:123–136

    Google Scholar 

  • Nishio R, Sasayama S, Matsumori A (2002) Left ventricular pressure-volume relationship in a murine model of congestive heart failure due to acute viral myocarditis. J Am Coll Cardiol 40:1506–1514

    Article  Google Scholar 

  • Pacher P, Mabley JG, Liaudet L, Evgenov OV, Marton A, Hasko G, Kollai M, Szabo C (2004) Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure. Am J Physiol Heart Circ Physiol 287:H2132–H2137

    Article  Google Scholar 

  • Rebel A, Lenz C, Krieter H, Waschke KF, Van Ackern K, Kuschinsky W (2001) Oxygen delivery at high blood viscosity and decreased arterial oxygen content to brains of conscious rats. Am J Physiol Heart Circ Physiol 280:H2591–H2597

    Google Scholar 

  • Sakai H, Hara H, Yuasa M, Tsai AG, Takeoka S, Tsuchida E, Intaglietta M (2000) Molecular dimensions of Hb-based O2 carriers determine constriction of resistance arteries and hypertension. Am J Physiol Heart Circ Physiol 279:H908–H915

    Google Scholar 

  • Sakai H, Cabrales P, Tsai AG, Tsuchida E, Intaglietta M (2005) Oxygen release from low and normal p50 Hb-vesicles in transiently occluded arterioles of the hamster window model. Am J Physiol Heart Circ Physiol 288:H2897–H2903

    Article  Google Scholar 

  • Salazar Vázquez BY, Wettstein R, Cabrales P, Tsai AG, Intaglietta M (2008) Microvascular experimental evidence on the relative significance of restoring oxygen carrying capacity vs. blood viscosity in shock resuscitation. Biochim Biophys Acta 1784(10):1421‐1427

    Google Scholar 

  • Shen W, Xu X, Ochoa M, Zhao G, Bernstein RD, Forfia P, Hintze TH (2000) Endogenous nitric oxide in the control of skeletal muscle oxygen extraction during exercise. Acta Physiol Scand 168:675–686

    Article  Google Scholar 

  • Sriram K, Tsai AG, Cabrales P, Meng F, Acharya SA, Tartakovsky DM, Intaglietta M (2012) PEG-albumin supra plasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning. Am J Physiol Heart Circ Physiol 302(12):H2489–H2497

    Article  Google Scholar 

  • Tsai AG, Friesenecker B, McCarthy M, Sakai H, Intaglietta M (1998a) Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skin fold model. Am J Physiol 275:H2170–H2180

    Google Scholar 

  • Tsai AG, Friesenecker B, McCarthy M, Sakai H, Intaglietta M (1998b) Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model. Am J Physiol 275:H2170–H2180

    Google Scholar 

  • Tsai AG, Acero C, Nance PR, Cabrales P, Frangos JA, Buerk DG, Intaglietta M (2005) Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 288:H1730–H1739

    Article  Google Scholar 

  • Tsai AG, Cabrales P, Manjula BN, Acharya SA, Winslow RM, Intaglietta M (2006) Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers. Blood 108:3603–3610

    Article  Google Scholar 

  • Tsai AG, Cabrales P, Acharya AS, Intaglietta M (2007) Resuscitation from hemorrhagic shock: recovery of oxygen carrrying capacity or perfusion?: Efficacy of new plasma expanders. Trans Altern Transf Med 9:246–253

    Article  Google Scholar 

  • Tuma R (1989) Continuing education: the role of hemodilution in optimal patient care. Temple University School of Medicine

    Google Scholar 

  • Vincent JL, Bernard GR, Beale R, Doig C, Putensen C, Dhainaut JF, Artigas A, Fumagalli R, Macias W, Wright T, Wong K, Sundin DP, Turlo MA, Janes J (2005) Drotrecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: further evidence for survival and safety and implications for early treatment. Crit Care Med 33:2266–2277

    Article  Google Scholar 

  • Wang P, Chaudry IH (1991) Crystalloid resuscitation restores but does not maintain cardiac output following severe hemorrhage. J Surg Res 50:163–169

    Article  Google Scholar 

  • Wang P, Hauptman JG, Chaudry IH (1990) Hemorrhage produces depression in microvascular blood flow which persists despite fluid resuscitation. Circ Shock 32:307–318

    Google Scholar 

  • Waschke KF, Krieter H, Hagen G, Albrecht DM, van Ackern K, Kuchinsky W (1994) Lack of dependence of cerebral blood flow on blood viscosity after blood exchange with a Newtonian O2 carrier. J Cereb Blood Flow Metab 14:871–876

    Article  Google Scholar 

  • Westermann D, Mersmann J, Melchior A, Freudenberger T, Petrik C, Schaefer L, Lullmann-Rauch R, Lettau O, Jacoby C, Schrader J, Brand-Herrmann SM, Young MF, Schultheiss HP, Levkau B, Baba HA, Unger T, Zacharowski K, Tschope C, Fischer JW (2008) Biglycan is required for adaptive remodeling after myocardial infarction. Circulation 117:1269–1276

    Article  Google Scholar 

  • Winslow RM, Lohman J, Malavalli A, Vandegriff KD (2004) Comparison of PEG-modified albumin and hemoglobin in extreme hemodilution in the rat. J Appl Physiol 97:1527–1534

    Article  Google Scholar 

  • Zakaria el R, Tsakadze NL, and Garrison RN (2006) Hypertonic saline resuscitation improves intestinal microcirculation in a rat model of hemorrhagic shock. Surgery 140:579–587 (discussion 587–578, 2006)

    Google Scholar 

Download references

Acknowledgments

Study supported in part by USPHS Bioengineering Research Partnership grant R24-HL 064395 (MI), and grants R01-HL 062354 (MI), R01-HL 076182 (PC) and USAMRAA award W81XWH1120012 (AGT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Intaglietta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsai, A.G., Martini, J., Salazar Vázquez, B.Y., Cabrales, P., Acharya, S.A., Intaglietta, M. (2013). The Role of Blood and Plasma Viscosity in Restoring Oxygen Delivery Capacity. In: Kim, H., Greenburg, A. (eds) Hemoglobin-Based Oxygen Carriers as Red Cell Substitutes and Oxygen Therapeutics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40717-8_4

Download citation

Publish with us

Policies and ethics