Skip to main content
Log in

Over-expression of pcvA involved in vesicle–vacuolar fusion affects the conidiation and penicillin production in Penicillium chrysogenum

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Rab GTPase is required for vesicle–vacuolar fusion during the vacuolar biogenesis in fungi. Rab GTPase-encoding gene, pcvA, was cloned from Penicillium chrysogenum: it contained five introns and its predicted protein contained the conserved Rab GTPase domain involved in GTP-binding and hydrolysis. Over-expression of pcvA significantly stimulated the vesicle–vacuolar fusion but repressed the conidiation and decreased conidial tolerance against thermal stress. Penicillin production was decreased in the pcvA over-expressed strain suggesting that pcvA is involved in vesicle–vacuolar fusion participates in the penicillin biosynthesis in P. chrysogenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartoszewska M, Kiel JA, Bovenberg RA, Veenhuis M, van der Klei IJ (2011) Autophagy deficiency promotes β-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77(4):1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Brakhage AA, Sprote P, Al-Abdallah Q, Gehrke A, Plattner H, Tuncher A (2004) Regulation of penicillin biosynthesis in filamentous fungi. In: molecular biotechnology of fungal beta-lactam antibiotics and related peptide synthetases. Adv Biochem Eng Biotechnol 88:45–90

    PubMed  CAS  Google Scholar 

  • Cantoral JM, Diez B, Barredo JL, Alvarez E, Martin JF (1987) High frequency transformation of Penicillium chrysogenum. Bio Technol 5(5):494–497

    Article  CAS  Google Scholar 

  • Chanda A, Roze LV, Kang S, Artymovich KA, Hicks GR, Raikhel NV, Calvo AM, Linz JE (2009) A key role for vesicles in fungal secondary metabolism. Proc Natl Acad Sci USA 106(46):19533–19538

    Article  PubMed  CAS  Google Scholar 

  • Chanda A, Roze LV, Linz JE (2010) A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. Eukaryot Cell 9(11):1724–1727

    Article  PubMed  CAS  Google Scholar 

  • Evers ME, Trip H, van den Berg MA, Bovenberg RAL, Driessen AJM (2004) Compartmentalization and transport in beta-lactam antibiotics biosynthesis. In: molecular biotechnology of fungal beta-lactam antibiotics and related peptide synthetases. Adv Biochem Eng Biotechnol 88:111–135

    PubMed  CAS  Google Scholar 

  • Garcia-Rico RO, Martin JF, Fierro F (2011) Heterotrimeric Galpha protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genet Biol 48(6):641–649

    Article  PubMed  CAS  Google Scholar 

  • Jami MS, Barreiro C, Garcia-Estrada C, Martin JF (2010) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9(6):1182–1198

    Article  PubMed  CAS  Google Scholar 

  • Kashiwazaki J, Iwaki T, Takegawa K, Shimoda C, Nakamura T (2009) Two fission yeast Rab7 homologs, Ypt7, and Ypt71, play antagonistic roles in the regulation of vacuolar morphology. Traffic 10(7):912–924

    Article  PubMed  CAS  Google Scholar 

  • Lee LW, Chiou CH, Klomparens KL, Cary JW, Linz JE (2004) Subcellular localization of aflatoxin biosynthetic enzymes Nor-1, Ver-1, and OmtA in time-dependent fractionated colonies of Aspergillus parasiticus. Arch Microbiol 181(3):204–214

    Article  PubMed  CAS  Google Scholar 

  • Lendenfeld T, Ghali D, Wolschek M, Kubicek-Pranz EM, Kubicek CP (1993) Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum. The amino acid precursors are derived from the vacuole. J Biol Chem 268(1):665–671

    PubMed  CAS  Google Scholar 

  • Liu G, Tian Y, Yang H, Tan H (2005) A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55(6):1855–1866

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8(3):282–293

    Article  PubMed  CAS  Google Scholar 

  • Ohsumi K, Arioka M, Nakajima H, Kitamoto K (2002) Cloning and characterization of a gene (avaA) from Aspergillus nidulans encoding a small GTPase involved in vacuolar biogenesis. Gene 291(1–2):77–84

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Liu G, Yang H, Tian Y, Tan H (2009) The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 72(3):710–723

    Article  PubMed  CAS  Google Scholar 

  • Roberts CJ, Raymond CK, Yamashiro CT, Stevens TH (1991) Methods for studying the yeast vacuole. Methods Enzymol 194:644–661

    Article  PubMed  CAS  Google Scholar 

  • Roze LV, Chanda A, Linz JE (2011) Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol 48(1):35–48

    Article  PubMed  CAS  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Yu JH (2011) AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology 157:313–326

    Article  PubMed  CAS  Google Scholar 

  • Ullán RV, Liu G, Casqueiro J, Gutierrez S, Banuelos O, Martin JF (2002) The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267(5):673–683

    Article  PubMed  Google Scholar 

  • van den Berg MA, Albang R, Albermann K et al (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26(10):1161–1168

    Article  PubMed  CAS  Google Scholar 

  • van der Lende TR, de Kamp M, van den Berg M, Sjollema K, Bovenberg RAL, Veenhuis M, Konings WN, Driessen AJM (2002) Delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37(1):49–55

    Article  PubMed  Google Scholar 

  • Wang FQ, Liu J, Dai M, Ren ZH, Su CY, He JG (2007) Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum. Biochem Biophys Res Commun 360(2):453–458

    Article  PubMed  CAS  Google Scholar 

  • Whyte JRC, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115(13):2627–2637

    PubMed  CAS  Google Scholar 

  • Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Hua Xiang (Institute of Microbiology, CAS) for providing the fluorescence microscope. We thank Prof. Rongxiang Fang (Institute of Microbiology, CAS) for providing the plasmid pCAMBIA1302-LX-1. This work was supported by grants from the Ministry of Science and Technology of China (2009CB118905), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-EW-J-6) and the Ministry of Science and Technology of China (Grant No. 2010ZX09401-403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Yang, J., An, Y. et al. Over-expression of pcvA involved in vesicle–vacuolar fusion affects the conidiation and penicillin production in Penicillium chrysogenum . Biotechnol Lett 34, 519–526 (2012). https://doi.org/10.1007/s10529-011-0792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0792-4

Keywords

Navigation