Skip to main content

Conservation, Evaluation, and Utilization of Biodiversity

  • Chapter
  • First Online:
Genomics and Breeding for Climate-Resilient Crops

Abstract

In 1984, Plant Genetic Resources (PGR) were defined by the International Undertaking of the FAO as the entire generative and vegetative reproductive material of species with economical and/or social value, especially for the agriculture of the present and the future, with special emphasis on nutritional plants. Within the last 100 years, with powerful support from the “plant genetic resources movement” since about 1970, large collections of PGR have been built up in genebanks as a reservoir for present and future tasks for breeding research and plant breeding. The disappearance of landraces and other materials, including in their centers of diversity, became evident (genetic erosion). The speeding up of the loss of species (extinction) initiated the global biodiversity discussions in the early 1980s. Extinction and genetic erosion are both driven by climatic change. Impending more significant damage through climatic change and global warming has led to conservation activities, which are largely based on in situ methods. But they are also useful for the conservation of wild relatives of crop plants and complement the ex situ approach of the genebanks.

The uses of PGR for improving the ability of crop plants to cope with the results of changing climate are described. They include newly introduced crop plants from wild progenitors, neglected and underutilized crops, and new plant combinations. The evaluation of PGR has to be intensified in order to obtain material with the desired characteristics (heat resistance, drought resistance, salt resistance, stress resistance). Germplasm enhancement is necessary to obtain material that can be used by breeders.

PGR and their uses in breeding research and breeding have to be considered as an important basis for the fight against the various effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri MA (1991) Ecology of tropical herbivores in polycultural agroecosystems. In: Price PW, Lewinsohn T, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, NY, pp 607–617

    Google Scholar 

  • Altieri MA (1994) Biodiversity and pest management in agro-ecosystems. Food Products Press, New York, NY

    Google Scholar 

  • Anderson E (1967) Plants, man and life. University of California Press, Berkeley, CA

    Google Scholar 

  • Austin RB, Stack RW, Blackwell RD et al (1980) Genetic improvement in winter wheat yields since 1900 and associated physiological changes. J Agric Sci Camb 94:675–689

    Article  Google Scholar 

  • Badridze G, Weidner A, Asch F, Börner A (2009) Variation in salt tolerance within a Georgian wheat germplasm collection. Genet Resour Crop Evol 56:1125–1130

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Becker H (2000) Influence of plant breeding in genetic diversity (Germ.). Schriftenr Vegetationskunde 32:87–94

    Google Scholar 

  • Beerling DJ (1999) New estimates of carbon transfer to terrestrial ecosystems between the last glacial maximum and the Holocene. Terra Nova 11:162–167

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2011) Soil bacteria support and protect plants against abiotic stresses. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants - mechanisms and adaptations. InTech, Rijeka, pp 143–170 (http://www.intechopen.com)

  • Bidinger FR, Serraj R, Rizvi SMH, Howarth C, Yadav RS, Hash CT (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] topcross hybrids. Field Crop Res 94:14–32

    Article  Google Scholar 

  • Braasch G (2007) Earth under fire: how global warming is changing the world. University of California Press, Berkeley, CA

    Google Scholar 

  • Brandolini A, Vaccino P (2012) A glimpse into the past: Strampelli’s bread wheats legacy. Genet Resour Crop Evol 59:839–850

    Article  Google Scholar 

  • Braun H-J, Payne TS, Morgounov AI, van Ginkel M, Rajaram S (1998) The challenge: one billion tons of wheat by 2020. Key-note address. In: Slinkard AE (ed) Proceedings of 9th wheat genetics symposium, vol 1. University Extension Press, University of Saskatchewan, Canada, pp 33–40

    Google Scholar 

  • Brown AHD (1989) The case for core collections. In: Brown AHD, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 135–156

    Google Scholar 

  • Brücher H (1982) Die sieben Säulen der Welternährung. Waldemar Kramer, Frankfurt (Main)

    Google Scholar 

  • Brush SB (1999) Genetic erosion of crop populations in centres of diversity: a revision. In: Proceedings of technical meeting, FAO views on PGR, pp 34–44 (http://apps3.fao.org/wiews/Prague/Paper5.jsp)

  • Brush SB (ed) (2000) Genes in the field on-farm conservation of crop diversity. Lewis, Boca Raton, FL

    Google Scholar 

  • Burney JA, Davis SJ, Lobella DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci USA 107:12052–12057

    Article  PubMed  CAS  Google Scholar 

  • Callow JA, Ford-Lloyd BV, Newberry HN (eds) (1997) Biotechnology and plant genetic resources – conservation and use. CAB International, Wallingford, Oxon

    Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Change Biol 4:785–796

    Article  Google Scholar 

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DA, Soleri D (1989) Diversity and the new green revolution. Diversity 5:24–25

    Google Scholar 

  • Diamond J (1997) Guns, germs, and steel: the fates of human societies. Norton, New York, NY

    Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Dwivedi SL, Blair MW, Upadhyaya HD, Serraj R, Balaji J, Buhariwalla HK, Ortiz R, Crouch JH (2005) Using genomics to exploit grain legume biodiversity in crop improvement. Plant Breed Rev 26:171–357

    Google Scholar 

  • FAO (2008) Climate change and biodiversity for food and agriculture. Technical background document from the expert consultation held on 13 to 14 Feb 2008. FAO, Rome

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. FAO, Rome, 370 p

    Google Scholar 

  • Ferguson AR (2007) The need of characterisation and evaluation of germplasm: Kiwifruit as an example. Euphytica 154:371–382

    Article  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2007) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  PubMed  Google Scholar 

  • Fleming RA, Volney WJA (1995) Effect of climate change on insect defoliator population processes in Canada’s Boreal forest: some plausible scenarios. Water Air Soil Pollut 82:445–454

    Article  CAS  Google Scholar 

  • Frankel OH (1984) Genetic perspective of germplasm conservation. In: Arber W, Llimensee K, Peacock WJ, Stralinger P (eds) Genetic manipulations: impact on man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Frankel OH, Bennett E (eds) (1970) Genetic resources in plants – their exploration and conservation. In: International biological programme handbook No. 11. Blackwell Scientific, Oxford

    Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Giorgi B, Porfiri O (eds) (1998) The varieties of Strampelli: a milestone in wheat breeding both in Italy and in the world. In: Proceedings of the meeting, 26 Sept 1997, Abbadia di Fiastra, Tolentino MC, Italy

    Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    Article  PubMed  CAS  Google Scholar 

  • Guarino L, Maxted N, Chiwona EA (2005) A methodological model for ecogeographic surveys for crops. In: IPGRI technical bulletin No 9. IBPGR, Rome

    Google Scholar 

  • Guedes-Pinto H, Darvey N, Carnide VP (eds) (1996) Triticale: today and tomorrow. Kluwer, Dordrecht

    Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hammer K (1980) Studies towards a monographic treatment of wild plant collections: Aegilops L. (Germ., Engl. summary). Kulturpflanze 28:33–180

    Article  Google Scholar 

  • Hammer K (1984) The domestication syndrome. Kulturpflanze 32:11–34 (in Germany with English summary)

    Article  Google Scholar 

  • Hammer K (1988) Preadaptation and the domestication of crops and weeds. Biol Zentralblatt 107:631–636 (in Germany with English summary)

    Google Scholar 

  • Hammer K (2003) Resolving the challenge posed by agrobiodiversity and plant genetic resources – an attempt. J Agric Rural Dev Trop Subtrop 76:184

    Google Scholar 

  • Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50

    Google Scholar 

  • Hammer K, Heuser F, Khoshbakht K, Teklu Y, Hammer-Spahillari M (2012) Plant genetic resources for breeding. In: Acquaah G (ed) Principles of plant genetics and breeding, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Hanelt P, IPK (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops, 6 vols. Springer, Berlin

    Google Scholar 

  • Harlan JR (1976) Genetic resources in wild relatives of crops. Crop Sci 16:329–333

    Article  Google Scholar 

  • Hawkes JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621

    Article  Google Scholar 

  • Hawkes JG, Maxted N, Ford-Lloyd BV (2000) The ex situ conservation of plant genetic resources. Kluwer, Dordrecht

    Book  Google Scholar 

  • Heywood VH, Dulloo ME (2006) In situ conservation of wild plant species: a critical global review. In: Bioversity technical bulletin No 11. FAO, Rome

    Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut TM, Skovmand B, Taba S, Waburton ML (1999) Plant genetic resources: what can they contribute toward increase crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    Article  PubMed  CAS  Google Scholar 

  • Iltis HH (1988) Serendipity in the exploration of biodiversity: what good are weedy tomatoes? In: Wilson EO (ed) BioDiversity. National Academy Press, Washington, DC, pp 98–105

    Google Scholar 

  • IPCC (2007) Fourth assessment report climate change 2007: synthesis report. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Jackson MT, Ford-Lloyd, Parry ML (eds) (1990) Climatic change and plant genetic resources. Bellhaven, London

    Google Scholar 

  • Jonas H (2002) In: Portinaro PP (ed) Il principio di responsabilità. Un'etica per la civiltà tecnologica. Biblioteca Einaudi. ISBN 8806164430

    Google Scholar 

  • Khoshbakht K, Hammer K (2010) Threatened crop species diversity. Shahid Beheshti University Press, Tehran, Iran

    Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini, Hammer K, Özkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Cereals. Springer, Berlin, pp 1–76

    Chapter  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Takumia S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134:74–86

    Article  PubMed  CAS  Google Scholar 

  • Latha R, Rubia L, Bennett J, Swaminathan MS (2004) Allele mining for stress tolerance genes in Oryza species and related germplasm. Mol Biotechnol 27:101–108

    Article  PubMed  CAS  Google Scholar 

  • Levy S (2011) What’s best for bees. Nature 479:164–165

    Article  PubMed  CAS  Google Scholar 

  • Lieth H, Moschenko M, Lohmann M, Koyro H-W, Hamdy A (eds) (1999) Halophyte uses in different climates. I. Ecological and ecophysiological studies. Backhuys, Leiden

    Google Scholar 

  • Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    Article  PubMed  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Kell SP, Iriondo J, Dulloo E, Turok J (2008) Crop wild relative conservation and use. CAB International, Wallingford, Oxon

    Google Scholar 

  • Merrill ED (1930) The improbability of pre-Columbian Eurasian-American contacts in the light of the origin and distribution of cultivated plants. J NY Bot Gard 31:209–312

    Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PL, Sheehy JE (2006) Supercharging rice photosynthesis to increase yield. New Phytol 171:688–693

    Article  PubMed  CAS  Google Scholar 

  • Morison JIL, Morecroft MD (eds) (2006) Plant growth and climate change. Blackwell, Oxford

    Google Scholar 

  • Mujeeb-Kazi A, Rajaram S (2002) Transferring alien genes from related species and genera for wheat improvement. FAO Plant Prod Prot Ser 30:199–215

    Google Scholar 

  • Oikonnomou C, Flocas HA, Hatzaki M, Asimakopoulos DN, Giannakopoulos C (2008) Future changes in the occurrence of extreme precipitation events in Eastern Mediterranean. Glob Next J 10:255–262

    Google Scholar 

  • Ortiz R (2002) Germplasm enhancement to sustain genetic gains in crop improvement. In: Engels JMM, Ramanatha VR, Brown AHD, Jackson M (eds) Managing plant genetic diversity. CABI, Wallingford, Oxon

    Google Scholar 

  • Ortiz R, Braun H-J, Crossa J, Crouch JH, Davenport G, Dixon J et al (2008) Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genet Resour Crop Evol 55:1095–1140

    Article  Google Scholar 

  • Pignone D (2009) Men and plants: a history inscribed in words, drawings and DNA. J Agric Rural Dev Trop Subtrop 92(Suppl):73–85

    Google Scholar 

  • Pistorius R (1997) Scientists, plants and politics. A history of plant genetic resources movement. IPGRI, Rome

    Google Scholar 

  • Pujol B, David P, McKey D (2005) Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol Lett 8:138–147

    Article  Google Scholar 

  • Rahaie M, Xue G-P, Naghavi MR, Alizadeh H, Schenk PM (2010) A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep 29:835–844

    Article  PubMed  CAS  Google Scholar 

  • Richerson PJ, Boyd R, Bettinger RL (2001) Was agriculture impossible during the pleistocene but mandatory during the holocene? A climate change hypothesis. Am Antiq 66:387–411

    Article  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security challenges and policies. Science 302:1917–1919

    Article  PubMed  CAS  Google Scholar 

  • Roy J, Saugier B, Mooney HA (2001) Terrestrial global productivity. Academic, San Diego, CA

    Google Scholar 

  • Ruosteenoja K, Carter TR, Jylhä K, Tuomenvirta H (2003) Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios. Finnish Environment Institute, Helsinki

    Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Scheinvar L (2007) Los xoconostles (las tunas ácidas) en el alimentación humana. México DF, 310 p

    Google Scholar 

  • Solbrig OT, van Emden HM, van Oordt PGWJ (1994) Biodiversity and global change. CAB International, Wallingford, Oxon

    Google Scholar 

  • Sonnante G, Pignone D (2008) Using crop wild relatives as sources of useful genes. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dullo ME, Turok K (eds) Crop wild relative conservation and use. CABI, Oxford, pp 566–576

    Google Scholar 

  • Sonnante G, Pignone D, Hammer K (2007) The domestication of artichoke and cardoon: from Roman times to genomics age. Ann Bot 100:1095–1100

    Article  PubMed  Google Scholar 

  • Stefanescu C, Peñuelas J, Filella I (2003) Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob Change Biol 9:1494–1506

    Article  Google Scholar 

  • Stokstad E (2010) Despite progress, biodiversity declines. Science 329:1272–1273

    Article  PubMed  CAS  Google Scholar 

  • Tam SM, Hays JB, Chetelat RT (2011) Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato. Theor Appl Genet 123:1445–1458

    Article  PubMed  CAS  Google Scholar 

  • Thormann I, Gaisberger H, Mattei F, Snook L, Arnaud E (2012) Digitization and online availability of original collecting mission data to improve data quality and enhance the conservation and use of plant genetic resources. Genet Resour Crop Evol 59:635–644

    Article  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  PubMed  CAS  Google Scholar 

  • Vaughan DA, Balázs E, Heslop-Harrison JS (2007) From crop domestication to super-domestication. Ann Bot 100:893–901

    Article  PubMed  CAS  Google Scholar 

  • Vavilov NI (1926a) Studies on the origin of cultivated plants (Russ, Engl summary). Bull Appl Bot Plant Breed 16:1–245

    Google Scholar 

  • Vavilov NI (1926b) Geographical regularities in the distribution of genes of cultivated plants (Russ, Engl Summary). Bull Appl Bot Plant Breed 17:411–428

    Google Scholar 

  • Vavilov NI (1935) The phytogeographical basis for plant breeding (Russ, Engl summary). In: Teoretičeskie Osnovy Selekcii, vol 1. Sel’chozgiz, Moscow, Leningrad, pp 15–75

    Google Scholar 

  • Vavilov NI (1997) In: Löve D (trans) Five continents. IPGRI/VIR, Rome/St. Petersburg. ISBN 92-9043-302-7

    Google Scholar 

  • Veteläinen M, Negri V, Maxted N (eds) (2009) European landraces: on-farm conservation, management and use. In: Bioversity technical bulletin No 15, FAO, Rome, 344 p

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesank C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Waltz E (2012) Tiptoeing around transgenics. Nat Biotechnol 30:215–217

    Article  PubMed  CAS  Google Scholar 

  • Weissmann S, Feldman M, Gressel J (2008) Hypothesis: Transgene establishment in wild relatives of wheat can be prevented by utilizing the Ph1 gene as a senso stricto chaperon to prevent homoeologous recombination. Plant Sci 175:410–414

    Article  CAS  Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol Evol Syst 42:1–22

    Article  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  Google Scholar 

  • Yensen NP (1987) Development of a rare halophyte grain: prospects for reclamation of slat-ruined land. J Wash Acad Sci 77:209–214

    Google Scholar 

  • Zachos FE, Habel JC (eds) (2011) Biodiversity hotspots. Distribution and protection of conservation priority areas. Springer, Berlin

    Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Pignone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pignone, D., Hammer, K. (2013). Conservation, Evaluation, and Utilization of Biodiversity. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37045-8_2

Download citation

Publish with us

Policies and ethics