Skip to main content

Studies on Orthopedic Sports Medicine: New Horizons

  • Reference work entry
  • First Online:
Sports Injuries

Abstract

Over the last 40 years, orthopedic surgery has been dramatically changed by the adoption of joint replacement, open reduction and internal fixation, and arthroscopy. Concurrently new technologies evolved: biologic concepts aiming to restore damaged tissues and organs using tissue engineering and robotic surgery to improve preoperative and intraoperative planning and to ensure accuracy and precision of the surgery. In this chapter, the current statuses of the two techniques that revolutionize orthopedics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACI:

Autologous chondrocyte implantation

ACL:

Anterior cruciate ligament

CAOS:

Computer-assisted orthopedic surgery

MSCs:

Mesenchymal stem/stromal cells

THA:

Total hip arthroplasty

TKA:

Total knee arthroplasty

UKA:

Unicompartmental knee arthroplasty

References

  • Ahmad Z, Wardale J, Brooks R et al (2012) Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy 28(7):1018–1029

    Article  Google Scholar 

  • Argenson JA, Flecher X (2004) Minimally invasive unicompartmental knee arthroplasty. Knee 11:341

    Article  Google Scholar 

  • Atesok K, Schemitsch EH (2010) Computer-assisted trauma surgery. J Am Acad Orthop Surg 18(5):247–258

    Article  Google Scholar 

  • Cartiaux O, Docquier PL, Paul L et al (2008) Surgical inaccuracy of tumor resection and reconstruction within the pelvis: an experimental study. Acta Orthop 79:695–702

    Article  Google Scholar 

  • Cheng T, Liu T, Zhang G et al (2011) Computer-navigated surgery in anterior cruciate ligament reconstruction: are radiographic outcomes better than conventional surgery? Arthroscopy 27(1):97–100. doi:10.1016/j.arthro.2010.05.012. Epub 2010 Oct 15. Review

    Google Scholar 

  • Cheng T, Zhao S, Peng X, Zhang X (2012a) Does computer assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc 20(7):1307–1322

    Article  Google Scholar 

  • Cheng T, Zhang GY, Zhang XL (2012b) Does computer navigation system really improve early clinical outcomes after anterior cruciate ligament reconstruction? A meta-analysis and systematic review of randomized controlled trials. Knee 19(2):73–77. doi:10.1016/j.knee.2011.02.011. Epub 2011 Apr 1

    Google Scholar 

  • Cheong D, Letson GD (2011) Computer-assisted navigation and musculoskeletal sarcoma surgery. Cancer Control 18(3):171–176. Review

    Article  Google Scholar 

  • Chouteau J, Benareau I, Testa R et al (2008) Comparative study of knee anterior cruciate ligament reconstruction with or without fluoroscopic assistance: a prospective study of 73 cases. Arch Orthop Trauma Surg 128:945–950

    Article  Google Scholar 

  • Cleary K, Peters TM (2010) Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 12:119–142

    Article  CAS  Google Scholar 

  • Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  Google Scholar 

  • Dunbar NJ, Roche MW, Park BH et al (2012) Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty. J Arthroplasty 27(5):803–808

    Article  Google Scholar 

  • Ellera Gomes JL, da Silva RC, Silla LM, Abreu MR, Pellanda R (2012) Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc 20(2):373–377. doi:10.1007/s00167-011-1607-9

    Google Scholar 

  • Filardo G, Madry H, Jelic M, Roffi A et al (2013) Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc 21(8):1717–1729

    Article  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  Google Scholar 

  • Gillespy T, Manfrini M, Ruggieri P et al (1988) Staging of intraosseous extent of osteosarcoma: correlation of preoperative CT and MR imaging with pathologic macroslides. Radiology 167:765–767

    Article  Google Scholar 

  • Godwin EE, Young NJ, Dudhia J et al (2012) Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 44:25–32. doi:10.1111/j. 2042–3306.2011.00363.x

    Google Scholar 

  • Gurgel HM, Croci AT, Cabrita HA et al (2013) Acetabular component positioning in total hip arthroplasty with and without a computer-assisted system: a prospective, randomized and controlled study. J Arthroplasty. doi:10.1016/j.arth.2013.04.017. pii: S0883-5403(13)00310-0

    Google Scholar 

  • Harris JD, Siston RA, Brophy RH et al (2011) Failures, re-operations, and complications after autologous chondrocyte implantation – a systematic review. Osteoarthritis Cartilage 19:779–791

    Article  CAS  Google Scholar 

  • Hart R, Krejzla J, Sváb P et al (2008) Outcomes after conventional versus computer-navigated anterior cruciate ligament reconstruction. Arthroscopy 24:569–578

    Article  Google Scholar 

  • Horie M, Driscoll MD, Sampson HW et al (2012) Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model. J Bone Joint Surg Am 94(8):701–712

    Article  Google Scholar 

  • Horwitz EM, Gordon PL, Koo WKK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99(13):8932–8937

    Article  CAS  Google Scholar 

  • Jitsuiki J, Ochi M, Ikuta Y (1994) Meniscal repair enhanced by an interpositional free synovial autograft: an experimental study in rabbits. Arthroscopy 10:659–666

    Article  CAS  Google Scholar 

  • Kagami H, Agata H, Tojo A (2011) Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol 43(3):286–289

    Article  CAS  Google Scholar 

  • Kantelhardt SR, Martinez R, Baerwinkel S et al (2011) Operative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic- guided pedicle screw replacement. Eur Spine J 20(6):860–868

    Article  Google Scholar 

  • Kean TJ, Lin P, Caplan AI et al (2013) MSCs: delivery routes and engraftment, cell- targeting strategies, and immune modulation. Stem Cells Int 2013:732742. doi:10.1155/2013/732742. Epub 2013 Aug 13

    CAS  Google Scholar 

  • Kodali P, Yang S, Koh J (2008) Computer-assisted surgery for anterior cruciate ligament reconstruction. Sports Med Arthrosc 16:67–76

    Article  Google Scholar 

  • Longo UG, Lamberti A, Maffulli N et al (2011) Tissue engineered biological augmentation for tendon healing: a systematic review. Br Med Bull 98:31–59

    Article  Google Scholar 

  • Manzotti A, Cerveri P, De Momi E et al (2011) Does computer-assisted surgery benefit leg length restoration in total hip replacement? Navigation versus conventional freehand. Int Orthop 35(1):19–24

    Article  Google Scholar 

  • Marcacci M, Kon E, Moukhachev V et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(6):947–955

    Article  CAS  Google Scholar 

  • Mauch F, Apic G, Becker U et al (2008) Differences in the placement of the tibial tunnel during reconstruction of the anterior cruciate ligament with and without computer-assisted navigation. Am J Sports Med 35:1824–1832

    Article  Google Scholar 

  • Merloz P, Tonetti J, Pittet L et al (1998) Pedicle screw placement using image guided techniques. Clin Orthop Relat Res 354:39–48

    Article  Google Scholar 

  • Netravali A, Shen F, Park Y, Bargar WL (2013) A perspective on robotic assistance for knee arthroplasty. Adv Orthop 2013:970703

    Article  Google Scholar 

  • Osawa A, Harner CD, Gharaibeh B et al (2013) The use of blood vessel-derived stem cells for meniscal regeneration and repair. Med Sci Sports Exerc 45(5):813–823

    Article  CAS  Google Scholar 

  • Petrigliano F, McAllister D, Wu B (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22:441–451

    Article  Google Scholar 

  • Picci P, Sangiorgi L, Rougraff BT et al (1994) Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol 12:2699–2705

    Article  CAS  Google Scholar 

  • Plaweski S, Cazal J, Rosell P et al (2006) Anterior cruciate ligament reconstruction using navigation: a comparative study on 60 patients. Am J Sports Med 34:542–552

    Article  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  Google Scholar 

  • Prockop DJ, Brenner M, Fibbe WE et al (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12(5):576–578. doi:10.3109/14653249.2010.507330

    Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda T et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  CAS  Google Scholar 

  • Saw KY, Anz A, Siew-Yoke Jee C et al (2013) Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 29(4):684–694

    Article  Google Scholar 

  • Schmitt A, van Griensven M, Imhoff AB et al (2012) Application of stem cells in orthopedics. Stem Cells Int 2012:394962. doi:10.1155/2012/394962. Epub 2012 Feb 23

    CAS  Google Scholar 

  • Schnabel LV, Lynch ME, van der Meulen MC et al (2009) Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 27(10):1392–1398. doi:10.1002/jor.20887

    CAS  Google Scholar 

  • Shelbourne KD, Rask BP (2001) The sequelae of salvaged nondegenerative peripheral vertical medial meniscus tears with anterior cruciate ligament reconstruction. Arthroscopy 17:270–274

    Article  Google Scholar 

  • Sikorski JM, Chauhan S (2003) Computer-assisted orthopaedic surgery: do we need CAOS? J Bone Joint Surg Br 85-B:319–323

    Article  Google Scholar 

  • Specht LM, Koval KJ (2001–2002) Robotics and computer-assisted orthopaedic surgery. Bull Hosp Jt Dis 60(3–4):168–172

    Google Scholar 

  • Steinert AF, Rackwitz L, Gilbert F et al (2012) Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration : current status and perspectives. Stem Cells Transl Med 1(3):237–247

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  • Tian NF, Huang QS, Zhou P et al (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20(6):846–859

    Article  Google Scholar 

  • Uchio Y, Ochi M, Adachi N et al (2003) Results of rasping of meniscal tears with and without anterior cruciate ligament injury as evaluated by second-look arthroscopy. Arthroscopy 19:463–469

    Article  Google Scholar 

  • Whitlock PW, Smith TL, Poehling GG et al (2007) A naturally derived cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomaterials 28(29):4321–4329. Epub 2007 Jul 3

    Article  CAS  Google Scholar 

  • Wong KC, Kumta SM (2013) Joint-preserving tumor resection and reconstruction using image-guided computer navigation. Clin Orthop Relat Res 471(3):762–773. doi:10.1007/s11999-012-2536-8

    Google Scholar 

  • Zaffagnini S, Klos TV, Bignozzi S (2010) Computer-assisted anterior cruciate ligament reconstruction: an evidence-based approach of the first 15 years. Arthroscopy 26:546–554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuneyt Tamam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tamam, C., Poehling, G.G. (2015). Studies on Orthopedic Sports Medicine: New Horizons. In: Doral, M.N., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36569-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36569-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36568-3

  • Online ISBN: 978-3-642-36569-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics