Skip to main content

Legionnaires’ Disease

  • Reference work entry
The Prokaryotes

Abstract

Legionella pneumophila, the etiological agent of Legionnaires’ disease was first recognized in 1976, during an outbreak of severe pneumonia at the convention of the American Legion in Philadelphia. Since then the genus Legionella has expanded, and to date more than 50 different species are described. However, L. pneumophila remains the major cause of human disease, as it is responsible for over 90 % of legionellosis cases worldwide. This chapter starts with a description of the genus Legionella and the ecology of these bacteria. We then highlight the epidemiology, clinical features, and the different diagnostic assays and methods available. In the second part, we focus on the pathogenesis, the virulence factors, and the immune response of the host. Special emphasis is placed on the implication of the literally hundreds of different effector proteins secreted by the Dot/Icm type IV secretion system. In the third section we discuss recent knowledge acquired on genomics, transcriptomics, and the metabolic features of Legionella, and, particularly, we present new insight on comparative genomics, evolution, horizontal gene transfer, and the regulation of the life cycle of L. pneumophila.

Parts of this chapter were modified from the Legionella chapter of the previous book edition written by Paul H. Edelstein and Nicholas P. Cianciotto.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz DH, Gavrilin MA, Akhter A, Caution K, Kotrange S, Khweek AA, Abdulrahman BA, Grandhi J, Hassan ZA, Marsh C, Wewers MD, Amer AO (2011) Apoptosis-associated speck-like protein (ASC) controls Legionella pneumophila infection in human monocytes. J Biol Chem 286:3203–3208

    Article  PubMed  CAS  Google Scholar 

  • Abu Kwaik Y (1998) Fatal attraction of mammalian cells to Legionella pneumophila. Mol Microbiol 30:689–695

    Article  Google Scholar 

  • Abu Kwaik Y (1996) The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Appl Environ Microbiol 62:2022–2028

    PubMed  CAS  Google Scholar 

  • Abu Kwaik Y, Eisenstein BI, Engleberg NC (1993) Phenotypic modulation by Legionella pneumophila upon infection of macrophages. Infect Immun 61:1320–1329

    PubMed  CAS  Google Scholar 

  • Abu-Zant A, Asare R, Graham JE, Abu Kwaik Y (2006) Role for RpoS but not RelA of Legionella pneumophila in modulation of phagosome biogenesis and adaptation to the phagosomal microenvironment. Infect Immun 74:3021–3026

    Article  PubMed  CAS  Google Scholar 

  • Adeleke A, Pruckler J, Benson R, Rowbotham T, Halablab M, Fields B (1996) Legionella-like amebal pathogens–phylogenetic status and possible role in respiratory disease. Emerg Infect Dis 2:225–230

    Article  PubMed  CAS  Google Scholar 

  • Adeleke AA, Fields BS, Benson RF, Daneshaver MI, Pruckler JM, Ratcliff RM, Harrison TG, Weyant RS, Birtles RJ, Raoult D, Halablab MA (2001) Legionella drozanskii sp. nov., Legionella rowbathamii sp. nov. and Legionella fallonii sp. nov.: three unusual new Legionella species. Int J Syst Evol Microbiol 51:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Akamine M, Higa F, Arakaki N, Kawakami K, Takeda K, Akira S, Saito A (2005) Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect Immun 73:352–361

    Article  PubMed  CAS  Google Scholar 

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498

    Article  PubMed  CAS  Google Scholar 

  • Al-Khodor S, Kalachikov S, Morozova I, Price CT, Abu Kwaik Y (2009) The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect Immun 77:374–386

    Article  PubMed  CAS  Google Scholar 

  • Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y (2008) A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 70:908–923

    PubMed  CAS  Google Scholar 

  • Al-Quadan T, Kwaik YA (2011) Molecular characterization of exploitation of the polyubiquitination and farnesylation machineries of Dictyostelium Discoideum by the AnkB F-Box effector of Legionella Pneumophila. Front Microbiol 2:23

    Article  PubMed  CAS  Google Scholar 

  • Al-Quadan T, Price CT, Abu Kwaik Y (2012) Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol 20:299–306

    Article  PubMed  CAS  Google Scholar 

  • Al-Quadan T, Price CT, London N, Schueler-Furman O, Abu Kwaik Y (2011) Anchoring of bacterial effectors to host membranes through host-mediated lipidation by prenylation: a common paradigm. Trends Microbiol 19:573–579

    Article  PubMed  CAS  Google Scholar 

  • Alary M, Joly JR (1991) Risk factors for contamination of domestic hot water systems by legionellae. Appl Environ Microbiol 57:2360–2367

    PubMed  CAS  Google Scholar 

  • Albert-Weissenberger C, Cazalet C, Buchrieser C (2007) Legionella pneumophila – a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64:432–448

    Article  PubMed  CAS  Google Scholar 

  • Albert-Weissenberger C, Sahr T, Sismeiro O, Hacker J, Heuner K, Buchrieser C (2010) Control of flagellar gene regulation in Legionella pneumophila and its relation to growth phase. J Bacteriol 192:446–455

    Article  PubMed  CAS  Google Scholar 

  • Allard KA, Dao J, Sanjeevaiah P, McCoy-Simandle K, Chatfield CH, Crumrine DS, Castignetti D, Cianciotto NP (2009) Purification of legiobactin and the importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 77:2887–2895

    Article  PubMed  CAS  Google Scholar 

  • Allard KA, Viswanathan VK, Cianciotto NP (2006) lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Allegra S, Berger F, Berthelot P, Grattard F, Pozzetto B, Riffard S (2008) Use of flow cytometry to monitor Legionella viability. Appl Environ Microbiol 74:7813–7816

    Article  PubMed  CAS  Google Scholar 

  • Alli OA, Zink S, von Lackum NK, Abu-Kwaik Y (2003) Comparative assessment of virulence traits in Legionella spp. Microbiology 149:631–641

    Article  PubMed  CAS  Google Scholar 

  • Altman E, Segal G (2008) The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 90:1985–1996

    Article  CAS  Google Scholar 

  • Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307

    Article  PubMed  CAS  Google Scholar 

  • Amaro F, Gilbert JA, Owens S, Trimble W, Shuman HA (2012) Whole-genome sequence of the human pathogen Legionella pneumophila serogroup 12 strain 570-CO-H. J Bacteriol 194:1613–1614

    Article  PubMed  CAS  Google Scholar 

  • Amemura-Maekawa J, Kura F, Helbig JH, Chang B, Kaneko A, Watanabe Y, Isobe J, Nukina M, Nakajima H, Kawano K, Tada Y, Watanabe H (2010) Characterization of Legionella pneumophila isolates from patients in Japan according to serogroups, monoclonal antibody subgroups and sequence types. J Med Microbiol 59:653–659

    Article  PubMed  Google Scholar 

  • Amemura-Maekawa J, Mishima-Abe S, Kura F, Takahashi T, Watanabe H (1999) Identification of a novel periplasmic catalase-peroxidase KatA of Legionella pneumophila. FEMS Microbiol Lett 176:339–344

    Article  PubMed  CAS  Google Scholar 

  • Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Nunez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223

    Article  PubMed  CAS  Google Scholar 

  • Amer AO, Byrne BG, Swanson MS (2005) Macrophages rapidly transfer pathogens from lipid raft vacuoles to autophagosomes. Autophagy 1:53–58

    Article  PubMed  CAS  Google Scholar 

  • Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7:765–778

    Article  PubMed  CAS  Google Scholar 

  • Anand CM, Skinner AR, Malic A, Kurtz JB (1983) Interaction of L. pneumophila and a free living amoeba (Acanthamoeba palestinensis). J Hyg (Cambridge) 91:167–178

    Article  CAS  Google Scholar 

  • Andrews HL, Vogel JP, Isberg RR (1998) Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect Immun 66:950–958

    PubMed  CAS  Google Scholar 

  • Ang DK, Oates CV, Schuelein R, Kelly M, Sansom FM, Bourges D, Boon L, Hertzog PJ, Hartland EL, van Driel IR (2010) Cutting edge: pulmonary Legionella pneumophila is controlled by plasmacytoid dendritic cells but not type I IFN. J Immunol 184:5429–5433

    Article  PubMed  CAS  Google Scholar 

  • Aragon V, Kurtz S, Cianciotto NP (2001) Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect Immun 69:177–185

    Article  PubMed  CAS  Google Scholar 

  • Aragon V, Kurtz S, Flieger A, Neumeister B, Cianciotto NP (2000) Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. Infect Immun 68:1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Aragon V, Rossier O, Cianciotto NP (2002) Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology 148:2223–2231

    PubMed  CAS  Google Scholar 

  • Arasaki K, Roy CR (2010) Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b. Traffic 11:587–600

    Article  PubMed  CAS  Google Scholar 

  • Arasaki K, Toomre DK, Roy CR (2012) The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 11:46–57

    Article  PubMed  CAS  Google Scholar 

  • Archer KA, Ader F, Kobayashi KS, Flavell RA, Roy CR (2010) Cooperation between multiple microbial pattern recognition systems is important for host protection against the intracellular pathogen Legionella pneumophila. Infect Immun 78:2477–2487

    Article  PubMed  CAS  Google Scholar 

  • Archer KA, Alexopoulou L, Flavell RA, Roy CR (2009) Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila. Cell Microbiol 11:21–36

    Article  PubMed  CAS  Google Scholar 

  • Archer KA, Roy CR (2006) MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect Immun 74:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Arnow PM, Chou T, Weil D, Shapiro EN, Kretzschmar C (1982) Nosocomial Legionnaires disease caused by aerosolized tap water from respiratory devices. J Infect Dis 146:460–467

    Article  PubMed  CAS  Google Scholar 

  • Asare R, Abu Kwaik Y (2007) Early trafficking and intracellular replication of Legionella longbeachae within an ER-derived late endosome-like phagosome. Cell Microbiol 9:1571–1587

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1999) Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol 1:283–293

    Article  PubMed  CAS  Google Scholar 

  • Aurass P, Pless B, Rydzewski K, Holland G, Bannert N, Flieger A (2009) bdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection. Appl Environ Microbiol 75:4506–4515

    Article  PubMed  CAS  Google Scholar 

  • Aurell H, Etienne J, Forey F, Reyrolle M, Girardo P, Farge P, Decludt B, Campese C, Vandenesch F, Jarraud S (2003) Legionella pneumophila serogroup 1 strain Paris: endemic distribution throughout France. J Clin Microbiol 41:3320–3322

    Article  PubMed  Google Scholar 

  • Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163

    Article  PubMed  CAS  Google Scholar 

  • Bachman MA, Swanson MS (2004) Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun 72:2468–2476

    Article  PubMed  CAS  Google Scholar 

  • Baine WB, Rasheed JK (1979) Aromatic substrate specificity of browning by cultures of the Legionnaires’ disease bacterium. Ann Int Med 90:619–620

    PubMed  CAS  Google Scholar 

  • Baine WB, Rasheed JK, Feeley JC, Gorman GW, Casida LE (1978) Effect of supplemental L-tyrosine on pigment production in cultures of the Legionnaires’ disease bacterium. Curr Microbiol 1:93–94

    Article  CAS  Google Scholar 

  • Ballard AL, Fry NK, Chan L, Surman SB, Lee JV, Harrison TG, Towner KJ (2000) Detection of Legionella pneumophila using a real-time PCR hybridization assay. J Clin Microbiol 38:4215–4218

    PubMed  CAS  Google Scholar 

  • Bandhuvula P, Saba JD (2007) Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends Mol Med 13:210–217

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay P, Byrne B, Chan Y, Swanson MS, Steinman HM (2003) Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages. Infect Immun 71:4526–4535

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay P, Liu S, Gabbai CB, Venitelli Z, Steinman HM (2007) Environmental mimics and the Lvh Type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila. Infect Immun 75:723–735

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay P, Steinman HM (2000) Catalase-peroxidases of Legionella pneumophila: cloning of the katA gene and studies of KatA function. J Bacteriol 182:6679–6686

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay P, Steinman HM (1998) Legionella pneumophila catalase-peroxidase: cloning of the katB gene and studies of KatB function. J Bacteriol 180:5369–5374

    PubMed  CAS  Google Scholar 

  • Banerji S, Aurass P, Flieger A (2008) The manifold phospholipases A of Legionella pneumophila - identification, export, regulation, and their link to bacterial virulence. Int J Med Microbiol 298:169–181

    Article  PubMed  CAS  Google Scholar 

  • Banerji S, Bewersdorff M, Hermes B, Cianciotto NP, Flieger A (2005) Characterization of the major secreted zinc metalloprotease-dependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila. Infect Immun 73:2899–2909

    Article  PubMed  CAS  Google Scholar 

  • Barbaree JM, Fields BS, Feeley JC, Gorman GW, Martin WT (1986) Isolation of protozoa from water associated with a legionellosis outbreak and demonstration of intracellular multiplication of Legionella pneumophila. Appl Environ Microbiol 51:422–424

    PubMed  CAS  Google Scholar 

  • Barker J, Brown MR, Collier PJ, Farrell I, Gilbert P (1992) Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation. Appl Environ Microbiol 58:2420–2425

    PubMed  CAS  Google Scholar 

  • Barker J, Lambert PA, Brown MR (1993) Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila. Infect Immun 61:3503–3510

    PubMed  CAS  Google Scholar 

  • Barrabeig I, Rovira A, Garcia M, Oliva JM, Vilamala A, Ferrer MD, Sabria M, Dominguez A (2010) Outbreak of Legionnaires’ disease associated with a supermarket mist machine. Epidemiol Infect 138:1823–1828

    Article  PubMed  CAS  Google Scholar 

  • Bartfeld S, Engels C, Bauer B, Aurass P, Flieger A, Bruggemann H, Meyer TF (2009) Temporal resolution of two-tracked NF-kappaB activation by Legionella pneumophila. Cell Microbiol 11:1638–1651

    Article  PubMed  CAS  Google Scholar 

  • Baskerville A, Conlan JW, Ashworth LA, Dowsett AB (1986) Pulmonary damage caused by a protease from Legionella pneumophila. Br J Exp Pathol 67:527–536

    PubMed  CAS  Google Scholar 

  • Baskerville A, Fitzgeorge RB, Broster M, Hambleton P (1983) Histopathology of experimental Legionnaires’ disease in guinea pigs, rhesus monkeys and marmosets. J Pathol 139:349–362

    Article  PubMed  CAS  Google Scholar 

  • Bauer M, Mathieu L, Deloge-Abarkan M, Remen T, Tossa P, Hartemann P, Zmirou-Navier D (2008) Legionella bacteria in shower aerosols increase the risk of Pontiac fever among older people in retirement homes. J. Epidemiol. Commun. Health 62:913–920

    Article  CAS  Google Scholar 

  • Beckers MC, Yoshida S, Morgan K, Skamene E, Gros P (1995) Natural resistance to infection with Legionella pneumophila: chromosomal localization of the Lgn1 susceptibility gene. Mamm Genome 6:540–545

    Article  PubMed  CAS  Google Scholar 

  • Beigel F, Jurgens M, Filik L, Bader L, Luck C, Goke B, Ochsenkuhn T, Brand S, Seiderer J (2009) Severe Legionella pneumophila pneumonia following infliximab therapy in a patient with Crohn’s disease. Inflamm Bowel Dis 15:1240–1244

    Article  PubMed  Google Scholar 

  • Bellinger-Kawahara C, Horwitz MA (1990) Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella pneumophila and mediates phagocytosis of liposome-MOMP complexes by human monocytes. J Exp Med 172:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Belyi I, Popoff MR, Cianciotto NP (2003) Purification and characterization of a UDP-glucosyltransferase produced by Legionella pneumophila. Infect Immun 71:181–186

    Article  PubMed  CAS  Google Scholar 

  • Belyi Y, Jank T, Aktories K (2011) Effector glycosyltransferases in Legionella. Front Microbiol 2:76

    Article  PubMed  CAS  Google Scholar 

  • Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K (2006) Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci USA 103:16953–16958

    Article  PubMed  CAS  Google Scholar 

  • Belyi Y, Tabakova I, Stahl M, Aktories K (2008) Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190:3026–3035

    Article  PubMed  CAS  Google Scholar 

  • Bender J, Rydzewski K, Broich M, Schunder E, Heuner K, Flieger A (2009) Phospholipase PlaB of Legionella pneumophila represents a novel lipase family: protein residues essential for lipolytic activity, substrate specificity, and hemolysis. J Biol Chem 284:27185–27194

    Article  PubMed  CAS  Google Scholar 

  • Benin AL, Benson RF, Arnold KE, Fiore AE, Cook PG, Williams LK, Fields B, Besser RE (2002a) An outbreak of travel-associated Legionnaires disease and Pontiac fever: the need for enhanced surveillance of travel-associated legionellosis in the United States. J Infect Dis 185:237–243

    Article  PubMed  Google Scholar 

  • Benin AL, Benson RF, Besser RE (2002b) Trends in Legionnaires disease, 1980-1998: declining mortality and new patterns of diagnosis. Clin Infect Dis 35:1039–1046

    Article  PubMed  Google Scholar 

  • Benson RF, Fields BS (1998) Classification of the genus Legionella. Semin Respir Infect 13:90–99

    PubMed  CAS  Google Scholar 

  • Benson RF, Thacker WL, Daneshvar MI, Brenner DJ (1996) Legionella waltersii sp. nov. and an unnamed Legionella genomospecies isolated from water in Australia. Int J Syst Bacteriol 46:631–634

    Article  PubMed  CAS  Google Scholar 

  • Benson RF, Thacker WL, Fang FC, Kanter B, Mayberry WR, Brenner DJ (1990) Legionella sainthelensi serogroup 2 isolated from patients with pneumonia. Res Microbiol 141:453–463

    Article  PubMed  CAS  Google Scholar 

  • Benson RF, Thacker WL, Lanser JA, Sangster N, Mayberry WR, Brenner DJ (1991) Legionella adelaidensis, a new species isolated from cooling tower water. J Clin Microbiol 29:1004–1006

    PubMed  CAS  Google Scholar 

  • Benson RF, Thacker WL, Waters RP, Quinlivan PA, Mayberry WR, Brenner DJ, Wilkinson HW (1989) Legionella quinlivanii sp. nov. isolated from water. Curr Microbiol 18:195–197

    Article  CAS  Google Scholar 

  • Bercovier H, Fattal B, Shuval H (1986a) Seasonal distribution of legionellae isolated from various types of water in Israel. Isr J Med Sci 22:644–646

    PubMed  CAS  Google Scholar 

  • Bercovier H, Steigerwalt AG, Derhi-Cochin M, Moss CW, Wilkinson HW, Benson RF, Brenner DJ (1986b) Isolation of legionellae from oxidation ponds and fishponds in Israel and description of Legionella israelensis sp. nov. Int J Syst Bacteriol 36:368–371

    Article  Google Scholar 

  • Berendt RF, Young HW, Allen RG, Knutsen GL (1980) Dose-response of guinea pigs experimentally infected with aerosols of Legionella pneumophila. J Infect Dis 141:186–192

    Article  PubMed  CAS  Google Scholar 

  • Berg JD, Hoff JC, Roberts PV, Matin A (1985) Growth of Legionella pneumophila in continuous culture. Appl Environ Microbiol 49:1534–1537

    PubMed  CAS  Google Scholar 

  • Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19

    Article  PubMed  CAS  Google Scholar 

  • Berger KH, Merriam JJ, Isberg RR (1994) Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 14:809–822

    Article  PubMed  CAS  Google Scholar 

  • Berger P, Papazian L, Drancourt M, La Scola B, Auffray JP, Raoult D (2006) Ameba-associated microorganisms and diagnosis of nosocomial pneumonia. Emerg Infect Dis 12:248–255

    Article  PubMed  Google Scholar 

  • Berk SG, Gunderson JH, Newsome AL, Farone AL, Hayes BJ, Redding KS, Uddin N, Williams EL, Johnson RA, Farsian M, Reid A, Skimmyhorn J, Farone MB (2006) Occurrence of infected amoebae in cooling towers compared with natural aquatic environments: implications for emerging pathogens. Environ Sci Technol 40:7440–7444

    Article  PubMed  CAS  Google Scholar 

  • Berk SG, Ting RS, Turner GW, Ashburn RJ (1998) Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp. Appl Environ Microbiol 64:279–286

    PubMed  CAS  Google Scholar 

  • Berrington WR, Iyer R, Wells RD, Smith KD, Skerrett SJ, Hawn TR (2010) NOD1 and NOD2 regulation of pulmonary innate immunity to Legionella pneumophila. Eur J Immunol 40:3519–3527

    Article  PubMed  CAS  Google Scholar 

  • Bezanson G, Burbridge S, Haldane D, Marrie T (1992) In situ colonization of polyvinyl chloride, brass, and copper by Legionella pneumophila. Can J Microbiol 38:328–330

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj N, Nash TW, Horwitz MA (1986) Interferon-gamma-activated human monocytes inhibit the intracellular multiplication of Legionella pneumophila. J Immunol 137:2662–2669

    PubMed  CAS  Google Scholar 

  • Bhopal RS, Fallon RJ, Buist EC, Black RJ, Urquhart JD (1991) Proximity of the home to a cooling tower and risk of non-outbreak Legionnaires’ disease. Brit Med J 302:378–383

    Article  PubMed  CAS  Google Scholar 

  • Birtles RJ, Harrison TG, Samuel D, Taylor AG (1990) Evaluation of urinary antigen ELISA for diagnosing Legionella pneumophila serogroup 1 infection. J Clin Pathol 43:685–690

    Article  PubMed  CAS  Google Scholar 

  • Birtles RJ, Rowbotham TJ, Raoult D, Harrison TG (1996) Phylogenetic diversity of intra-amoebal legionellae as revealed by 16S rRNA gene sequence comparison. Microbiology 142:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Blair JM, Piddock LJ (2009) Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol 12:512–519

    Article  PubMed  CAS  Google Scholar 

  • Blanchard DK, Friedman H, Stewart WE, 2nd, Klein TW, Djeu JY (1988b) Role of gamma interferon in induction of natural killer activity by Legionella pneumophila in vitro and in an experimental murine infection model. Infect Immun 56:1187–1193

    PubMed  CAS  Google Scholar 

  • Blanchard DK, Djeu JY, Klein TW, Friedman H, Stewart WE, 2nd (1988a) Protective effects of tumor necrosis factor in experimental Legionella pneumophila infections of mice via activation of PMN function. J Leukoc Biol 43:429–435

    PubMed  CAS  Google Scholar 

  • Blanchard DK, Djeu JY, Klein TW, Friedman H, Stewart WE, II (1987) Induction of tumor necrosis factor by Legionella pneumophila. Infect Immun 55:433–437

    PubMed  CAS  Google Scholar 

  • Blanchard DK, Friedman H, Klein TW, Djeu JY (1989) Induction of interferon-gamma and tumor necrosis factor by Legionella pneumophila: augmentation of human neutrophil bactericidal activity. J Leukoc Biol 45:538–545

    PubMed  CAS  Google Scholar 

  • Blander SJ, Szeto L, Shuman HA, Horwitz MA (1990) An immunoprotective molecule, the major secretory protein of Legionella pneumophila, is not a virulence factor in a guinea pig model of Legionnaires’ disease. J Clin Invest 86:817–824

    Article  PubMed  CAS  Google Scholar 

  • Blatt SP, Parkinson MD, Pace E, Hoffman P, Dolan D, Lauderdale P, Zajac RA, Melcher GP (1993) Nosocomial Legionnaires’ disease: aspiration as a primary mode of disease acquisition. Am J Med 95:16–22

    Article  PubMed  CAS  Google Scholar 

  • Blázquez RM, Espinosa FJ, Martínez-Toldos CM, Alemany L, García-Orenes MC, Segovia M (2005) Sensitivity of urinary antigen test in relation to clinical severity in a large outbreak of Legionella pneumonia in Spain. Eur J Clin Microbiol Infect Dis 24:488–491

    Article  PubMed  Google Scholar 

  • Bohte R, van Furth R, van den Broek PJ (1995) Aetiology of community-acquired pneumonia: a prospective study among adults requiring admission to hospital. Thorax 50:543–547

    Article  PubMed  CAS  Google Scholar 

  • Borchardt J, Helbig JH, Luck PC (2008) Occurrence and distribution of sequence types among Legionella pneumophila strains isolated from patients in Germany: common features and differences to other regions of the world. Eur J Clin Microbiol Infect Dis 27:29–36

    Article  PubMed  CAS  Google Scholar 

  • Bornstein N, Fleurette J, Bosshard S, Bouvet C, Thouvenot D, Aymard M (1984) Evaluation of the incidence of serological cross reactions between Legionella and Mycoplasma or Chlamydia. Pathol Biol (Paris) 32:165–168

    CAS  Google Scholar 

  • Bornstein N, Marmet D, Surgot M, Nowicki M, Meugnier H, Fleurette J, Ageron E, Grimont F, Grimont PA, Thacker WL, Benson RF, Brenner DJ (1989) Legionella gratiana sp. nov. isolated from French spa water. Res Microbiol 140:541–552

    Article  PubMed  CAS  Google Scholar 

  • Boswell TC, Marshall LE, Kudesia G (1996) False-positive Legionella titres in routine clinical serology testing detected by absorption with Campylobacter: implications for the serological diagnosis of legionnaires' disease. J Infect 32:23–26

    Article  PubMed  CAS  Google Scholar 

  • Bouyer S, Imbert C, Rodier MH, Hechard Y (2007) Long-term survival of Legionella pneumophila associated with Acanthamoeba castellanii vesicles. Environ Microbiol 9:1341–1344

    Article  PubMed  CAS  Google Scholar 

  • Bozue JA, Johnson W (1996) Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect Immun 64:668–673

    PubMed  CAS  Google Scholar 

  • Braedel-Ruoff S, Faigle M, Hilf N, Neumeister B, Schild H (2005) Legionella pneumophila mediated activation of dendritic cells involves CD14 and TLR2. J Endotoxin Res 11:89–96

    PubMed  CAS  Google Scholar 

  • Brand BC, Sadosky AB, Shuman HA (1994) The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol Microbiol 14:797–808

    Article  PubMed  CAS  Google Scholar 

  • Brassinga AK, Hiltz MF, Sisson GR, Morash MG, Hill N, Garduno E, Edelstein PH, Garduno RA, Hoffman PS (2003) A 65-kilobase pathogenicity island is unique to philadelphia-1 strains of Legionella pneumophila. J Bacteriol 185:4630–3637

    Article  PubMed  CAS  Google Scholar 

  • Brassinga AK, Kinchen JM, Cupp ME, Day SR, Hoffman PS, Sifri CD (2010) Caenorhabditis is a metazoan host for Legionella. Cell Microbiol 12:343–361

    Article  PubMed  CAS  Google Scholar 

  • Breiman RF, Butler JC (1998) Legionnaires’ disease: clinical, epidemiological, and public health perspectives. Semin Respir Infect 13:84–89

    PubMed  CAS  Google Scholar 

  • Breiman RF, Cozen W, Fields BS, Mastro TD, Carr SJ, Spika JS, Mascola L (1990a) Role of air sampling in investigation of an outbreak of legionnaires’ disease associated with exposure to aerosols from an evaporative condenser. J Infect Dis 161:1257–1261

    Article  PubMed  CAS  Google Scholar 

  • Breiman RF, Fields BS, Sanden GN, Volmer L, Meier A, Spika JS (1990b) Association of shower use with Legionnaires’ disease. Possible role of amoebae. JAMA 263:2924–2926

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ (1987) Classification of the Legionellae. Sem Resp Infect 2:190–205

    CAS  Google Scholar 

  • Brenner DJ, Steigerwalt AG, Gorman GW, Weaver RE, Feeley JC, Cordes LG, Wilkinson HW, Patton C, Thomason BM, Lewallen-Sasseville KR (1980) Legionella bozemanii sp. nov. and Legionella dumoffii sp. nov.: classification of two additional species of Legionella associated with human pneumonia. Curr Microbiol 4:111–116

    Article  Google Scholar 

  • Brenner DJ, Steigerwalt AG, Gorman GW, Wilkinson HW, Bibb WF, Hackel M, Tyndall RL, Campbell J, Feeley JC, Thacker WL, Skaliy P, Martin WT, Brake BJ, Fields BS, McEachern HV, Corcoran LK (1985) Ten new species of Legionella. Int J Syst Bacteriol 35:50–59

    Article  Google Scholar 

  • Brenner DJ, Steigerwalt AG, McDade JE (1979) Classification of the Legionnaires’ disease bacterium: Legionella pneumophila, genus novum, species nova, of the family Legionellaceae, familia nova. Ann Intern Med 90:656–658

    PubMed  CAS  Google Scholar 

  • Brieland J, Freeman P, Kunkel R, Chrisp C, Hurley M, Fantone J, Engleberg C (1994) Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires’ disease. Am J Pathol 145:1537–1546

    PubMed  CAS  Google Scholar 

  • Brieland J, McClain M, Heath L, Chrisp C, Huffnagle G, LeGendre M, Hurley M, Fantone J, Engleberg C (1996) Coinoculation with Hartmannella vermiformis enhances replicative Legionella pneumophila lung infection in a murine model of Legionnaires’ disease. Infect Immun 64:2449–2456

    PubMed  CAS  Google Scholar 

  • Brieland J, McClain M, LeGendre M, Engleberg C (1997a) Intrapulmonary Hartmannella vermiformis: a potential niche for Legionella pneumophila replication in a murine model of legionellosis. Infect Immun 65:4892–4896

    PubMed  CAS  Google Scholar 

  • Brieland JK, Fantone JC, Remick DG, LeGendre M, McClain M, Engleberg NC (1997b) The role of Legionella pneumophila-infected Hartmannella vermiformis as an infectious particle in a murine model of Legionnaire’s disease. Infect Immun 65:5330–5333

    PubMed  CAS  Google Scholar 

  • Brieland JK, Jackson C, Hurst S, Loebenberg D, Muchamuel T, Debets R, Kastelein R, Churakova T, Abrams J, Hare R, O'Garra A (2000) Immunomodulatory role of endogenous interleukin-18 in gamma interferon-mediated resolution of replicative Legionella pneumophila lung infection. Infect Immun 68:6567–6573

    Article  PubMed  CAS  Google Scholar 

  • Brieland JK, Remick DG, Freeman PT, Hurley MC, Fantone JC, Engleberg NC (1995) In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor alpha and nitric oxide. Infect Immun 63:3253–3258

    PubMed  CAS  Google Scholar 

  • Brieland JK, Remick DG, LeGendre ML, Engleberg NC, Fantone JC (1998) In vivo regulation of replicative Legionella pneumophila lung infection by endogenous interleukin-12. Infect Immun 66:65–69

    PubMed  CAS  Google Scholar 

  • Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284:4846–4856

    Article  PubMed  CAS  Google Scholar 

  • Broome CV, Fraser DW (1979) Epidemiologic aspects of legionellosis. Epidemiol Rev 1:1–16

    PubMed  CAS  Google Scholar 

  • Bruggemann H, Cazalet C, Buchrieser C (2006) Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Curr Opin Microbiol 9:86–94

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA, Gouyette C, Kunst F, Steinert M, Heuner K, Coppee JY, Buchrieser C (2006) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8:1228–1240

    Article  PubMed  CAS  Google Scholar 

  • Brulet A, Nicolle MC, Giard M, Nicolini FE, Michallet M, Jarraud S, Etienne J, Vanhems P (2008) Fatal nosocomial Legionella pneumophila infection due to exposure to contaminated water from a washbasin in a hematology unit. Infect Control Hosp Epidemiol 29:1091–1093

    Article  PubMed  Google Scholar 

  • Bumbaugh AC, McGraw EA, Page KL, Selander RK, Whittam TS (2002) Sequence polymorphism of dotA and mip alleles mediating invasion and intracellular replication of Legionella pneumophila. Curr Microbiol 44:314–322

    PubMed  CAS  Google Scholar 

  • Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5:e1000508

    Article  PubMed  CAS  Google Scholar 

  • Buscher BA, Conover GM, Miller JL, Vogel SA, Meyers SN, Isberg RR, Vogel JP (2005) The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J Bacteriol 187:2927–2938

    Article  PubMed  CAS  Google Scholar 

  • Buse HY, Ashbolt NJ (2011) Differential growth of Legionella pneumophila strains within a range of amoebae at various temperatures associated with in-premise plumbing. Lett Appl Microbiol 53:217–224

    Article  PubMed  CAS  Google Scholar 

  • Buse HY, Brehm A, Santo Domingo JW, Ashbolt NJ (2011) Screening-level assays for potentially human-infectious environmental Legionella spp. J Microbiol 49:200–207

    Article  PubMed  CAS  Google Scholar 

  • Buse HY, Schoen ME, Ashbolt NJ (2012) Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. doi:10:1016/j.watres.2011.12.022

    Google Scholar 

  • Byrd TF, Horwitz MA (1989) Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest 83:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Byrd TF, Horwitz MA (2000) Aberrantly low transferrin receptor expression on human monocytes is associated with nonpermissiveness for Legionella pneumophila growth. J Infect Dis 181:1394–1400

    Article  PubMed  CAS  Google Scholar 

  • Byrne B, Swanson MS (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66:3029–3034

    PubMed  CAS  Google Scholar 

  • Campbell J, Bibb WF, Lambert MA, Eng S, Steigerwalt AG, Allard J, Moss CW, Brenner DJ (1984) Legionella sainthelensi: A new species of Legionella isolated from water near Mt. St. Helens. Appl Environ Microbiol 47:369–373

    PubMed  CAS  Google Scholar 

  • Campese C, Bitar D, Jarraud S, Maine C, Forey F, Etienne J, Desenclos JC, Saura C, Che D (2011) Progress in the surveillance and control of Legionella infection in France, 1998–2008. Int J Infect Dis 15:e30–e37

    Article  PubMed  Google Scholar 

  • Campese C, Roche D, Clement C, Fierobe F, Jarraud S, de Waelle P, Perrin H, Che D (2010) Cluster of Legionnaires’ disease associated with a public whirlpool spa. Euro Surveill 15

    Google Scholar 

  • Campodonico EM, Chesnel L, Roy CR (2005) A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol 56:918–933

    Article  PubMed  CAS  Google Scholar 

  • Caparon M, Johnson W (1988) Macrophage toxicity and complement sensitivity of virulent and avirulent strains of Legionella pneumophila. Rev Infect Dis 10:S377–S381

    Article  PubMed  Google Scholar 

  • Cargill KL, Pyle BH, Sauer RL, McFeters GA (1992) Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila. Can J Microbiol 38:423–429

    Article  PubMed  CAS  Google Scholar 

  • Carratala J, Garcia-Vidal C (2010) An update on Legionella. Curr Opin Infect Dis 23:152–157

    Article  PubMed  Google Scholar 

  • Carratala J, Gudiol F, Pallares R, Dorca J, Verdaguer R, Ariza J, Manresa F (1994) Risk factors for nosocomial Legionella pneumophila pneumonia. Am J Respir Crit Care Med 149:625–629

    PubMed  CAS  Google Scholar 

  • Carvalho FR, Nastasi FR, Gamba RC, Foronda AS, Pellizari VH (2008) Occurrence and diversity of legionellaceae in polar lakes of the antarctic peninsula. Curr Microbiol 57:294–300

    Article  PubMed  CAS  Google Scholar 

  • Carvalho FR, Vazoller RF, Foronda AS, Pellizari VH (2007) Phylogenetic study of Legionella species in pristine and polluted aquatic samples from a tropical atlantic forest ecosystem. Curr Microbiol 55:288–293

    Article  PubMed  CAS  Google Scholar 

  • Case CL, Roy CR (2011) Asc modulates the function of NLRC4 in response to infection of macrophages by Legionella pneumophila. MBio 2

    Google Scholar 

  • Case CL, Shin S, Roy CR (2009) Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 77:1981–1991

    Article  PubMed  CAS  Google Scholar 

  • Castellani Pastoris M, Passi C, Maroli M (1989) Evidence of Legionella pneumophila in some arthropods and related natural aquatic habitats. FEMS Microbiol Ecol 62:259–264

    Article  Google Scholar 

  • Castilla J, Barricarte A, Aldaz J, Garcia Cenoz M, Ferrer T, Pelaz C, Pineda S, Baladron B, Martin I, Goni B, Aratajo P, Chamorro J, Lameiro F, Torroba L, Dorronsoro I, Martinez-Artola V, Esparza MJ, Gastaminza MA, Fraile P, Aldaz P (2008) A large Legionnaires’ disease outbreak in Pamplona, Spain: early detection, rapid control and no case fatality. Epidemiol Infect 136:823–832

    Article  PubMed  CAS  Google Scholar 

  • Castor ML, Wagstrom EA, Danila RN, Smith KE, Naimi TS, Besser JM, Peacock KA, Juni BA, Hunt JM, Bartkus JM, Kirkhorn SR, Lynfield R (2005) An outbreak of Pontiac fever with respiratory distress among workers performing high-pressure cleaning at a sugar-beet processing plant. J Infect Dis 191:1530–1537

    Article  PubMed  Google Scholar 

  • Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, Sansom FM, Jarraud S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C (2010) Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet 6:e1000851

    Article  PubMed  CAS  Google Scholar 

  • Cazalet C, Jarraud S, Ghavi-Helm Y, Kunst F, Glaser P, Etienne J, Buchrieser C (2008) Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res 18:431–441

    Article  PubMed  CAS  Google Scholar 

  • Cazalet C, Rusniok C, Bruggemann H, Zidane N, Magnier A, Ma L, Tichit M, Jarraud S, Bouchier C, Vandenesch F, Kunst F, Etienne J, Glaser P, Buchrieser C (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • CDC (2011) Legionellosis – United States, 2000–2009. MMWR 60:1083–1086

    Google Scholar 

  • Chandler FW, Blackmon JA, Hicklin MD, Cole RM, Callaway CS (1979) Ultrastructure of the agent of Legionnaires’ disease in the human lung. Am J Clin Pathol 71:43–50

    PubMed  CAS  Google Scholar 

  • Chandler FW, Roth IL, Callaway CS, Bump JL, Thomason BM, Weaver RE (1980) Flagella on Legionnaires’ disease bacteria: ultastructural observations. Ann Int Med 93:711–714

    PubMed  CAS  Google Scholar 

  • Chang B, Kura F, Amemura-Maekawa J, Koizumi N, Watanabe H (2005) Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun 73:4272–4280

    Article  PubMed  CAS  Google Scholar 

  • Charpentier X, Faucher SP, Kalachikov S, Shuman HA (2008) Loss of RNase R induces competence development in Legionella pneumophila. J Bacteriol 190:8126–8136

    Article  PubMed  CAS  Google Scholar 

  • Chatfield CH, Cianciotto NP (2007) The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 75:4062–4070

    Article  PubMed  CAS  Google Scholar 

  • Chatfield CH, Mulhern BJ, Burnside DM, Cianciotto NP (2011) Legionella pneumophila LbtU acts as a novel, TonB-independent receptor for the Legiobactin siderophore. J Bacteriol 193:1563–1575

    Article  PubMed  CAS  Google Scholar 

  • Chee CE, Baddour LM (2007) Legionella maceachernii soft tissue infection. Am J Med Sci 334:410–413

    Article  PubMed  Google Scholar 

  • Chen J, de Felipe KS, Clarke M, Lu H, Anderson OR, Segal G, Shuman HA (2004) Legionella effectors that promote nonlytic release from protozoa. Science 303:1358–1361

    Article  PubMed  CAS  Google Scholar 

  • Cherry WB, Gorman GW, Orrison LH, Moss CW, Steigerwalt AG, Wilkinson HW, Johnson SE, McKinney RM, Brenner DJ (1982) Legionella jordanis: a new species of Legionella isolated from water and sewage. J Clin Microbiol 15:290–297

    PubMed  CAS  Google Scholar 

  • Chien M, Morozova I, Shi S, Sheng H, Chen J, Gomez SM, Asamani G, Hill K, Nuara J, Feder M, Rineer J, Greenberg JJ, Steshenko V, Park SH, Zhao B, Teplitskaya E, Edwards JR, Pampou S, Georghiou A, Chou IC, Iannuccilli W, Ulz ME, Kim DH, Geringer-Sameth A, Goldsberry C, Morozov P, Fischer SG, Segal G, Qu X, Rzhetsky A, Zhang P, Cayanis E, De Jong PJ, Ju J, Kalachikov S, Shuman HA, Russo JJ (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968

    Article  PubMed  CAS  Google Scholar 

  • Cho MC, Kim H, An D, Lee M, Noh SA, Kim MN, Chong YP, Woo JH (2012) Comparison of sputum and nasopharyngeal swab specimens for molecular diagnosis of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila. Ann Lab Med 32:133–138

    Article  PubMed  CAS  Google Scholar 

  • Chong A, Lima CA, Allan DS, Nasrallah GK, Garduno RA (2009) The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization. Infect Immun 77:4724–4739

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354–360

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto N, Eisenstein BI, Engleberg NC, Shuman H (1989a) Genetics and molecular pathogenesis of Legionella pneumophila, an intracellular parasite of macrophages. Molec Biol Med 6:490–424

    Google Scholar 

  • Cianciotto NP, Eisenstein BI, Mody CH, Toews GB, Engleberg NC (1989b) A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun 57:1255–1262

    PubMed  CAS  Google Scholar 

  • Cianciotto NP, Bangsborg JM, Eisenstein BI, Engleberg NC (1990a) Identification of mip-like genes in the genus Legionella. Infect Immun 58:2912–2918

    PubMed  CAS  Google Scholar 

  • Cianciotto NP, Eisenstein BI, Mody CH, Engleberg NC (1990b) A mutation in the mip gene results in an attenuation of Legionella pneumophila virulence. J Infect Dis 162:121–126

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP, Fields BS (1992) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci USA 89:5188–5191

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP, Kim Stamos J, Kamp DW (1995) Infectivity of Legionella pneumophila mip mutant for alveolar epithelial cells. Curr Microbiol 30:247–250

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP (2001) Pathogenicity of Legionella pneumophila. Int J Med Microbiol 291:331–343

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:581–588

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP, Cornelis P, Baysse C (2005) Impact of the bacterial type I cytochrome c maturation system on different biological processes. Mol Microbiol 56:1408–1415

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP (2007) Iron acquisition by Legionella pneumophila. Biometals 20:323–331

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP (2009) Many substrates and functions of type II protein secretion: lessons learned from Legionella pneumophila. Future Microbiol 4:797–805

    Article  PubMed  Google Scholar 

  • Ciesielski CA, Blaser MJ, Wang W-LL (1986) Serogroup specificity of Legionella pneumophila is related to lipopolysaccharide characteristics. Infect Immun 51:397–404

    PubMed  CAS  Google Scholar 

  • Cilloniz C, Ewig S, Polverino E, Marcos MA, Esquinas C, Gabarrus A, Mensa J, Torres A (2011) Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax 66:340–346

    Article  PubMed  Google Scholar 

  • Cirillo JD, Cirillo SLG, Yan L, Bermudez LE, Falkow S, Tompkins LS (1999) Intracellular growth in Acanthamoeba castellani affects monocyte entry mechanism and enhances virulence of Legionella pneumophila. Infect Immun 67:4427–4434

    PubMed  CAS  Google Scholar 

  • Cirillo JD, Falkow S, Tompkins LS (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62:3254–3261

    PubMed  CAS  Google Scholar 

  • Cirillo SL, Bermudez LE, El-Etr SH, Duhamel GE, Cirillo JD (2001) Legionella pneumophila entry gene rtxA is involved in virulence. Infect Immun 69:508–517

    Article  PubMed  CAS  Google Scholar 

  • Cirillo SL, Lum J, Cirillo JD (2000) Identification of novel loci involved in entry by Legionella pneumophila. Microbiology 146:1345–1359

    PubMed  CAS  Google Scholar 

  • Cirillo SL, Yan L, Littman M, Samrakandi MM, Cirillo JD (2002) Role of the Legionella pneumophila rtxA gene in amoebae. Microbiology 148:1667–1677

    PubMed  CAS  Google Scholar 

  • Cloud JL, Carroll KC, Pixton P, Erali M, Hillyard DR (2000) Detection of Legionella species in respiratory specimens using PCR with sequencing confirmation. J Clin Microbiol 38:1709–1712

    PubMed  CAS  Google Scholar 

  • Coers J, Vance RE, Fontana MF, Dietrich WF (2007a) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9:2344–2357

    Article  PubMed  CAS  Google Scholar 

  • Coers J, Vance RE, Fontana MF, Dietrich WF (2007b) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9:2344–2357

    Article  PubMed  CAS  Google Scholar 

  • Coil DA, Anne J (2010) The role of fimV and the importance of its tandem repeat copy number in twitching motility, pigment production, and morphology in Legionella pneumophila. Arch Microbiol 192:625–631

    Article  PubMed  CAS  Google Scholar 

  • Coil DA, Anne J (2009) Twitching motility in Legionella pneumophila. FEMS Microbiol Lett 293:271–277

    Article  PubMed  CAS  Google Scholar 

  • Colbourne JS, Pratt DJ, Smith MG, Fisher-Hoch SP, Harper D (1984) Water fittings as sources of Legionella pneumophila in a hospital plumbing system. Lancet 1:210–213

    Article  PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • Collins MT (1986) Legionella infections in animals. Isr J Med Sci 22:662–673

    PubMed  CAS  Google Scholar 

  • Collins MT, McDonald J, Høiby N, Aalund O (1984) Agglutinating antibody titers to members of the family Legionellaceae in cystic fibrosis patients as a result of cross-reacting antibodies to Pseudomonas aeruginosa. J Clin Microbiol 19:757–762

    PubMed  CAS  Google Scholar 

  • Conlan JW, Ashworth LA (1986) The relationship between the serogroup antigen and lipopolysaccharide of Legionella pneumophila. J Hyg 96:39–48

    Article  CAS  Google Scholar 

  • Conlan JW, Baskerville A, Ashworth LAE (1986) Separation of Legionella pneumophila proteases and purification of a protease which produces lesions like those of Legionnaires’ disease in guinea pig lung. J Gen Microbiol 132:1565–1574

    PubMed  CAS  Google Scholar 

  • Conlan JW, Williams A, Ashworth LA (1988) In vivo production of a tissue-destructive protease by Legionella pneumophila in the lungs of experimentally infected guinea-pigs. J Gen Microbiol 134:143–149

    PubMed  CAS  Google Scholar 

  • Conover GM, Derre I, Vogel JP, Isberg RR (2003) The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48:305–321

    Article  PubMed  CAS  Google Scholar 

  • Cordes LG, Wiesenthal AM, Gorman GW, Phair JP, Sommers HM, Brown A, Yu VL, Magnussen MH, Meyer RD, Wolf JS, Shands KN, Fraser DW (1981) Isolation of Legionella pneumophila from hospital shower heads. Ann Intern Med 94:195–197

    PubMed  CAS  Google Scholar 

  • Coscolla M, Comas I, Gonzalez-Candelas F (2011) Quantifying nonvertical inheritance in the evolution of Legionella pneumophila. Mol Biol Evol 28:985–1001

    Article  PubMed  CAS  Google Scholar 

  • Coscolla M, Fenollar J, Escribano I, Gonzalez-Candelas F (2010) Legionellosis outbreak associated with asphalt paving machine, Spain, 2009. Emerg Infect Dis 16:1381–1387

    Article  PubMed  Google Scholar 

  • Coscolla M, Gonzalez-Candelas F (2007) Population structure and recombination in environmental isolates of Legionella pneumophila. Environ Microbiol 9:643–656

    Article  PubMed  CAS  Google Scholar 

  • Costa J, d’Avo AF, da Costa MS, Verissimo A (2011) Molecular evolution of key genes for type II secretion in Legionella pneumophila. Environ Microbiol doi: 10.1111/j.1462-2920.2011.02646.x

    Google Scholar 

  • Cramp GJ, Harte D, Douglas NM, Graham F, Schousboe M, Sykes K (2010) An outbreak of Pontiac fever due to Legionella longbeachae serogroup 2 found in potting mix in a horticultural nursery in New Zealand. Epidemiol Infect 138:15–20

    Article  PubMed  CAS  Google Scholar 

  • Craun GF, Brunkard JM, Yoder JS, Roberts VA, Carpenter J, Wade T, Calderon RL, Roberts JM, Beach MJ, Roy SL (2010) Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clin Microbiol Rev 23:507–528

    Article  PubMed  CAS  Google Scholar 

  • Creagh EM, O'Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Chatterjee A, Chatterjee AK (2001) Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc. Mol Plant Microbe Interact 14:516–526

    Article  PubMed  CAS  Google Scholar 

  • Cunha BA (2010) Legionnaires’ disease: clinical differentiation from typical and other atypical pneumonias. Infect Dis Clin North Am 24:73–105

    Article  PubMed  Google Scholar 

  • D'Auria G, Jimenez N, Peris-Bondia F, Pelaz C, Latorre A, Moya A (2008) Virulence factor rtx in Legionella pneumophila, evidence suggesting it is a modular multifunctional protein. BMC Genomics 9:14

    Article  PubMed  CAS  Google Scholar 

  • D'Auria G, Jimenez-Hernandez N, Peris-Bondia F, Moya A, Latorre A (2010) Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC Genomics 11:181

    Article  PubMed  CAS  Google Scholar 

  • Dalebroux ZD, Edwards RL, Swanson MS (2009) SpoT governs Legionella pneumophila differentiation in host macrophages. Mol Microbiol 71:640–658

    Article  PubMed  CAS  Google Scholar 

  • Dalebroux ZD, Yagi BF, Sahr T, Buchrieser C, Swanson MS (2010) Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol Microbiol 76:200–219

    Article  PubMed  CAS  Google Scholar 

  • Davis GS, Winn WC, Jr, Gump DW, Beaty HN (1983) The kinetics of early inflammatory events during experimental pneumonia due to Legionella pneumophila in guinea pigs. J Infect Dis 148:823–835

    Article  PubMed  CAS  Google Scholar 

  • Davis GS, Winn WC, Jr, Gump DW, Craighead JE, Beaty HN (1982) Legionnaires’ pneumonia after aerosol exposure in guinea pigs and rats. Am Rev Respir Dis 126:1050–1057

    PubMed  CAS  Google Scholar 

  • De Buck E, Hoper D, Lammertyn E, Hecker M, Anne J (2008a) Differential 2-D protein gel electrophoresis analysis of Legionella pneumophila wild type and Tat secretion mutants. Int J Med Microbiol 298:449–461

    Article  PubMed  CAS  Google Scholar 

  • De Buck E, Lammertyn E, Anne J (2008b) The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16:442–453

    Article  PubMed  CAS  Google Scholar 

  • De Buck E, Lebeau I, Maes L, Geukens N, Meyen E, Van Mellaert L, Anne J, Lammertyn E (2004) A putative twin-arginine translocation pathway in Legionella pneumophila. Biochem Biophys Res Commun 317:654–661

    Article  PubMed  CAS  Google Scholar 

  • De Buck E, Maes L, Meyen E, Van Mellaert L, Geukens N, Anne J, Lammertyn E (2005) Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem Biophys Res Commun 331:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • De Buck E, Vranckx L, Meyen E, Maes L, Vandersmissen L, Anne J, Lammertyn E (2007) The twin-arginine translocation pathway is necessary for correct membrane insertion of the Rieske Fe/S protein in Legionella pneumophila. FEBS Lett 581:259–264

    Article  PubMed  CAS  Google Scholar 

  • de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117

    Article  PubMed  CAS  Google Scholar 

  • de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF, Kalachikov S, Shuman HA (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187:7716–7726

    Article  PubMed  CAS  Google Scholar 

  • DebRoy S, Aragon V, Kurtz S, Cianciotto NP (2006a) Legionella pneumophila Mip, a surface-exposed peptidylproline cis-trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants. Infect Immun 74:5152–5160

    Article  PubMed  CAS  Google Scholar 

  • DebRoy S, Dao J, Soderberg M, Rossier O, Cianciotto NP (2006b) Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci USA 103:19146–19151

    Article  PubMed  CAS  Google Scholar 

  • Declerck P (2010) Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol 12:557–566

    Article  PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, Margineanu A, van Hoef V, De Keersmaecker B, Ollevier F (2009) Replication of Legionella pneumophila in biofilms of water distribution pipes. Microbiol Res 164:593–603

    Article  PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, van Hoef V, Ollevier F (2007a) Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167

    Article  PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, van Hoef V, Ollevier F (2007b) Replication of Legionella pneumophila in floating biofilms. Curr Microbiol 55:435–440

    Article  PubMed  CAS  Google Scholar 

  • Degtyar E, Zusman T, Ehrlich M, Segal G (2009) A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol 11:1219–1235

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Viscogliosi P, Simonart T, Parent V, Marchand G, Dobbelaere M, Pierlot E, Pierzo V, Menard-Szczebara F, Gaudard-Ferveur E, Delabre K, Delattre JM (2005) Rapid method for enumeration of viable Legionella pneumophila and other Legionella spp. in water. Appl Environ Microbiol 71:4086–4096

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Viscogliosi P, Solignac L, Delattre JM (2009) Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumophila cells in environmental water samples. Appl Environ Microbiol 75:3502–3512

    Article  PubMed  CAS  Google Scholar 

  • Den Boer JW, Yzerman EP (2004) Diagnosis of Legionella infection in Legionnaires’ disease. Eur J Clin Microbiol Infect Dis 23:871–878

    Google Scholar 

  • Den Boer JW, Yzerman EP, Schellekens J, Lettinga KD, Boshuizen HC, Van Steenbergen JE, Bosman A, Van den Hof S, Van Vliet HA, Peeters MF, Van Ketel RJ, Speelman P, Kool JL, Conyn-Van Spaendonck MA (2002) A large outbreak of Legionnaires’ disease at a flower show, the Netherlands, 1999. Emerg Infect Dis 8:37–43

    Article  Google Scholar 

  • Dennis PJ, Brenner DJ, Thacker WL, Wait R, Vesey G, Steigerwalt AG, Benson RF (1993) Five new Legionella species isolated from water. Int J Syst Bacteriol 43:329–337

    Article  PubMed  CAS  Google Scholar 

  • Derre I, Isberg RR (2005) LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway. Infect Immun 73:4370–4380

    Article  PubMed  CAS  Google Scholar 

  • Derré I, Isberg RR (2004) Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 72:3048–3053

    Article  PubMed  CAS  Google Scholar 

  • Desvaux M, Hebraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145

    Article  PubMed  CAS  Google Scholar 

  • Dey R, Bodennec J, Mameri MO, Pernin P (2009) Free-living freshwater amoebae differ in their susceptibility to the pathogenic bacterium Legionella pneumophila. FEMS Microbiol Lett 290:10–17

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Diederen BM (2008) Legionella spp. and Legionnaires’ disease. J Infect 56:1–12

    Article  PubMed  CAS  Google Scholar 

  • Diederen BM, Bruin JP, Scopes E, Peeters MF, Ijzerman EP (2009) Evaluation of the Oxoid Xpect Legionella test kit for detection of Legionella pneumophila serogroup 1 antigen in urine. J Clin Microbiol 47:2272–2274

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Heuner K, Brand BC, Hacker J, Steinert M (2001) Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect Immun 69:2116–2122

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WF, Damron DM, Isberg RR, Lander ES, Swanson MS (1995) Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26:443–450

    Article  PubMed  CAS  Google Scholar 

  • Diez E, Lee SH, Gauthier S, Yaraghi Z, Tremblay M, Vidal S, Gros P (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55–60

    Article  PubMed  CAS  Google Scholar 

  • Doleans A, Aurell H, Reyrolle M, Lina G, Freney J, Vandenesch F, Etienne J, Jarraud S (2004) Clinical and environmental distributions of Legionella strains in France are different. J Clin Microbiol 42:458–460

    Article  PubMed  Google Scholar 

  • Doleans-Jordheim A, Akermi M, Ginevra C, Cazalet C, Kay E, Schneider D, Buchrieser C, Atlan D, Vandenesch F, Etienne J, Jarraud S (2006) Growth-phase-dependent mobility of the lvh-encoding region in Legionella pneumophila strain Paris. Microbiology 152:3561–3568

    Article  PubMed  CAS  Google Scholar 

  • Domínguez J, Galí N, Blanco S, Pedroso P, Prat C, Matas L, Ausina V (2001) Assessment of a new test to detect Legionella urinary antigen for the diagnosis of Legionnaires' disease. Diagn Microbiol Infect Dis 41:199–203

    Article  PubMed  Google Scholar 

  • Domínguez JA, Galí N, Pedroso P, Fargas A, Padilla E, Manterola JM, Matas L (1998) Comparison of the Binax Legionella urinary antigen enzyme immunoassay (EIA) with the Biotest Legionella Urin antigen EIA for detection of Legionella antigen in both concentrated and nonconcentrated urine samples. J Clin Microbiol 36:2718–2722

    PubMed  Google Scholar 

  • Donlan RM, Forster T, Murga R, Brown E, Lucas C, Carpenter J, Fields B (2005) Legionella pneumophila associated with the protozoan Hartmannella vermiformis in a model multi-species biofilm has reduced susceptibility to disinfectants. Biofouling 21:1–7

    Article  PubMed  CAS  Google Scholar 

  • Dorer MS, Kirton D, Bader JS, Isberg RR (2006) RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2:e34

    Article  PubMed  CAS  Google Scholar 

  • Dournon E, Bibb WF, Rajagopalan P, Desplaces N, McKinney RM (1988) Monoclonal antibody reactivity as a virulence marker for Legionella pneumophila serogroup 1 strains. J Infect Dis 157:496–501

    Article  PubMed  CAS  Google Scholar 

  • Dowling JN, Saha AK, Glew RH (1992) Virulence factors of the family Legionellaceae. Microbiol Rev 56:32–60

    PubMed  CAS  Google Scholar 

  • Doyle RM, Cianciotto NP, Banvi S, Manning PA, Heuzenroeder MW (2001) Comparison of virulence of Legionella longbeachae strains in guinea pigs and U937 macrophage-like cells. Infect Immun 69:5335–5344

    Article  PubMed  CAS  Google Scholar 

  • Doyle RM, Steele TW, McLennan AM, Parkinson IH, Manning PA, Heuzenroeder MW (1998) Sequence analysis of the mip gene of the soilborne pathogen Legionella longbeachae. Infect Immun 66:1492–1499

    PubMed  CAS  Google Scholar 

  • Dubuisson JF, Swanson MS (2006) Mouse infection by Legionella, a model to analyze autophagy. Autophagy 2:179–182

    PubMed  CAS  Google Scholar 

  • Duncan C, Prashar A, So J, Tang P, Low DE, Terebiznik M, Guyard C (2011) Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 79:2168–2181

    Article  PubMed  CAS  Google Scholar 

  • Dusserre E, Ginevra C, Hallier-Soulier S, Vandenesch F, Festoc G, Etienne J, Jarraud S, Molmeret M (2008) A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but noncultivable legionellae that can recover their cultivability. Appl Environ Microbiol 74:4817–4824

    Article  PubMed  CAS  Google Scholar 

  • Dutka BJ, Ewan P (1983) First isolation of Legionella pneumophila from the Canadian Great Lakes. J Great Lakes Res 9:430–432

    Article  Google Scholar 

  • Edagawa A, Kimura A, Doi H, Tanaka H, Tomioka K, Sakabe K, Nakajima C, Suzuki Y (2008) Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J Appl Microbiol 105:2104–2114

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH (1981) Improved semiselective medium for isolation of Legionella pneumophila from contaminated clinical and environmental specimens. J Clin Microbiol 14:298–303

    PubMed  CAS  Google Scholar 

  • Edelstein PH (1985b) Legionnaires’ disease. Laboratory manual, vol. 3. National Technical Information Service, Springfield, pp 1–146

    Google Scholar 

  • Edelstein PH (1985a) Legionella. In: Lennette EH, Balows A, Hausler WJ, Jr, Shadomy HJ (ed) Manual of clinical microbiology. American Society for Microbiology, Washington, DC, pp 373–381

    Google Scholar 

  • Edelstein PH (1986) Control of Legionella in hospitals. J Hosp Infect 8:109–115

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH (1995) Antimicrobial chemotherapy for legionnaires' disease: a review. Clin Infect Dis 21:S265–S276

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH (1993) Legionnaires’ disease. Clin Infect Dis 16:741–747

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH (1997) Detection of antibodies to Legionella spp. In: Rose NR, de Macario EC, Folds JD, Lane HC, Nakamura RM (ed) Manual of clinical laboratory immunology. American society for microbiology, Washington, DC, pp 502–509

    Google Scholar 

  • Edelstein PH (1998) Antimicrobial chemotherapy for Legionnaires disease: time for a change. Ann Intern Med 129:328–330

    PubMed  CAS  Google Scholar 

  • Edelstein PH (2007) Urine antigen tests positive for Pontiac fever: implications for diagnosis and pathogenesis. Clin Infect Dis 44:229–231

    Article  PubMed  Google Scholar 

  • Edelstein PH, Beer KB, Sturge JC, Watson AJ, Goldstein LC (1985) Clinical utility of a monoclonal direct fluorescent reagent specific for Legionella pneumophila: comparative study with other reagents. J Clin Microbiol 22:419–421

    PubMed  CAS  Google Scholar 

  • Edelstein PH, Brenner DJ, Moss CW, Steigerwalt AG, Francis EM, George WL (1982) Legionella wadsworthii species nova: a cause of human pneumonia. Ann Intern Med 97:809–813

    PubMed  CAS  Google Scholar 

  • Edelstein PH, Calarco K, Yasui VK (1984) Antimicrobial therapy of experimentally induced Legionnaires’ disease in guinea pigs. Am Rev Respir Dis 130:849–856

    PubMed  CAS  Google Scholar 

  • Edelstein PH, Cianciotto NP (2010) Legionella. In: Mandell GL, Bennett JE, Dolin R (ed) Principles and practice of infectious diseases, 7th edition, vol 2. Elsevier, Churchill Livingstone, pp 2969–2984

    Google Scholar 

  • Edelstein PH, Edelstein MA (1993) Intracellular growth of Legionella pneumophila serogroup 1 monoclonal antibody type 2 positive and negative bacteria. Epidemiol Infect 111:499–502

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH, Edelstein MA, Shephard LJ, Ward KW, Ratcliff RM (2011) Legionella steelei sp. nov. isolated from human respiratory specimens in California and South Australia. Int J Syst Evol Microbiol 62:1766–1771

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH, Edelstein MAC, Higa F, Falkow S (1999) Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc Natl Acad Sci USA 96:8190–8195

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH, Hu B, Higa F, Edelstein MA (2003) lvgA, a novel Legionella pneumophila virulence factor. Infect Immun 71:2394–2403

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH, Hu B, Shinzato T, Edelstein MA, Xu W, Bessman MJ (2005) Legionella pneumophila NudA Is a Nudix hydrolase and virulence factor. Infect Immun 73:6567–6576

    Article  PubMed  CAS  Google Scholar 

  • Edelstein PH, Metlay JP (2009) Legionella pneumophila goes clonal–Paris and Lorraine strain-specific risk factors. Clin Infect Dis 49:192–194

    Article  PubMed  Google Scholar 

  • Edelstein PH, Meyer RD, Finegold SM (1980) Laboratory diagnosis of Legionnaires’ disease. Am Rev Respir Dis 121:317–327

    PubMed  CAS  Google Scholar 

  • Edwards RL, Dalebroux ZD, Swanson MS (2009) Legionella pneumophila couples fatty acid flux to microbial differentiation and virulence. Mol Microbiol 71:1190–1204

    Article  PubMed  CAS  Google Scholar 

  • Edwards RL, Jules M, Sahr T, Buchrieser C, Swanson MS (2010) The Legionella pneumophila LetA/LetS two-component system exhibits rheostat-like behavior. Infect Immun 78:2571–2583

    Article  PubMed  CAS  Google Scholar 

  • Elliott JA, Winn WCJ (1986) Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila. Infect Immun 51:31–36

    PubMed  CAS  Google Scholar 

  • Ellis TN, Kuehn MJ (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94

    Article  PubMed  CAS  Google Scholar 

  • Emtiazi F, Schwartz T, Marten SM, Krolla-Sidenstein P, Obst U (2004) Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res 38:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Engleberg NC, Carter C, Weber DR, Cianciotto NP, Eisenstein BI (1989) DNA sequence of mip, a Legionella pneumophila gene associated with macrophage infectivity. Infect Immun 57:1263–1270

    PubMed  CAS  Google Scholar 

  • Engleberg NC, Drutz DJ, Eisenstein BI (1984) Cloning and expression of Legionella pneumophila antigens in Escherichia coli. Infect Immun 44:222–227

    PubMed  CAS  Google Scholar 

  • Engleberg NC, Howe DC, Rogers JE, Arroyo J, Eisenstein BI (1991) Characterization of a Legionella pneumophila gene encoding a lipoprotein antigen. Mol Microbiol 5:2021–2029

    Article  PubMed  CAS  Google Scholar 

  • Ensminger AW, Isberg RR (2010) E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 78:3905–3919

    Article  PubMed  CAS  Google Scholar 

  • Euser SM, Bruin JP, Mooi-Kokenberg EA, Peeters M, Verbakel H, Yzerman EP, Den Boer JW (2012) Diagnostic testing for Legionnaires’ disease in the Netherlands between 2007 and 2009: a possible cause for the decline in reported Legionnaires’ disease patients. Eur J Clin Microbiol Infect Dis. doi: 10.1007/s10096-011-1528-z

    Google Scholar 

  • Euser SM, Pelgrim M, den Boer JW (2010) Legionnaires’ disease and Pontiac fever after using a private outdoor whirlpool spa. Scand J Infect Dis 42:910–916

    Article  PubMed  Google Scholar 

  • Evans FF, Egan S, Kjelleberg S (2008) Ecology of type II secretion in marine gammaproteobacteria. Environ Microbiol 10:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Eylert E, Herrmann V, Jules M, Gillmaier N, Lautner M, Buchrieser C, Eisenreich W, Heuner K (2010) Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285:22232–22243

    Article  PubMed  CAS  Google Scholar 

  • Fallon RJ, Stack BH (1990) Legionnaires’ disease due to Legionella anisa. J Infect 20:227–229

    Article  PubMed  CAS  Google Scholar 

  • Fang GD, Yu VL, Vickers RM (1989) Disease due to the Legionellaceae (other than Legionella pneumophila): historical, microbiological, clinical, and epidemiological review. Medicine (Baltimore) 68:116–132

    Article  CAS  Google Scholar 

  • Faucher SP, Friedlander G, Livny J, Margalit H, Shuman HA (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci USA 107:7533–7538

    Article  PubMed  CAS  Google Scholar 

  • Faucher SP, Mueller CA, Shuman HA (2011) Legionella pneumophila transcriptome during intracellular multiplication in human macrophages. Front Microbiol 2:60

    PubMed  CAS  Google Scholar 

  • Faucher SP, Shuman HA (2011) Small regulatory RNA and Legionella pneumophila. Front Microbiol 2:98

    PubMed  CAS  Google Scholar 

  • Feddersen A, Meyer HG, Matthes P, Bhakdi S, Husmann M (2000) GyrA sequence-based typing of Legionella. Med Microbiol Immunol 189:7–11

    Article  PubMed  CAS  Google Scholar 

  • Feeley JC, Gorman GW, Weaver RE, Mackel DC, Smith HW (1978) Primary isolation media for Legionnaires disease bacterium. J Clin Microbiol 8:320–325

    PubMed  CAS  Google Scholar 

  • Feldman M, Segal G (2004) A specific genomic location within the icm/dot pathogenesis region of different Legionella species encodes functionally similar but nonhomologous virulence proteins. Infect Immun 72:4503–4511

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Zusman T, Hagag S, Segal G (2005) Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc Natl Acad Sci USA 102:12206–12211

    Article  PubMed  CAS  Google Scholar 

  • Ferhat M, Atlan D, Vianney A, Lazzaroni JC, Doublet P, Gilbert C (2009) The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS One 4:e7732

    Article  PubMed  CAS  Google Scholar 

  • Fernandez RC, Logan SM, Lee SH, Hoffman PS (1996) Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect Immun 64:1968–1976

    PubMed  CAS  Google Scholar 

  • Fernandez-Cruz A, Marin M, Castelo L, Usubillaga R, Martin-Rabadan P, Bouza E (2011) Legionella micdadei, a new cause of prosthetic joint infection. J Clin Microbiol 49:3409–3410

    Article  PubMed  Google Scholar 

  • Fernandez-Moreira E, Helbig JH, Swanson MS (2006) Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun 74:3285–3295

    Article  PubMed  CAS  Google Scholar 

  • Ferre MR, Arias C, Oliva JM, Pedrol A, Garcia M, Pellicer T, Roura P, Dominguez A (2009) A community outbreak of Legionnaires’ disease associated with a cooling tower in Vic and Gurb, Catalonia (Spain) in 2005. Eur J Clin Microbiol Infect Dis 28:153–159

    Article  PubMed  Google Scholar 

  • Fettes PS, Forsbach-Birk V, Lynch D, Marre R (2001) Overexpression of a Legionella pneumophila homologue of the E. coli regulator csrA affects cell size, flagellation, and pigmentation. Int J Med Microbiol 291:353–360

    Article  PubMed  CAS  Google Scholar 

  • Fields BS (1996) The molecular ecology of legionellae. Trends Microbiol 4:286–290

    Article  PubMed  CAS  Google Scholar 

  • Fields BS, Barbaree JM, Sanden GN, Morrill WE (1990) Virulence of a Legionella anisa strain associated with Pontiac fever: an evaluation using protozoan, cell culture, and guinea pig models. Infect Immun 58:3139–3142

    PubMed  CAS  Google Scholar 

  • Fields BS, Barbaree JM, Shotts EB, Jr, Feeley JC, Morrill WE, Sanden GN, Dykstra MJ (1986) Comparison of guinea pig and protozoan models for determining virulence of Legionella species. Infect Immun 53:553–559

    PubMed  CAS  Google Scholar 

  • Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526

    Article  PubMed  Google Scholar 

  • Fields BS, Sanden GN, Barbaree JM, Morrill WE, Wadowsky RM, White EH, Feeley JC (1989) Intracellular multiplication of Legionella pneumophila in amoebae isolated from hospital hot water tanks. Curr Microbiol 18:131–137

    Article  Google Scholar 

  • Fields BS, Shotts EBJR, Feeley JC, Gorman GW, Martin WT (1984) Proliferation of Legionella pneumophila as an intracellular parasite of the ciliated protozoan Tetrahymena pyriformis. Appl Environ Microbiol 47:467–471

    PubMed  CAS  Google Scholar 

  • Filloux A (2004) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta-Mol Cell Res 1694:163–179

    Article  CAS  Google Scholar 

  • Fischer G, Bang H, Ludwig B, Mann K, Hacker J (1992) Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPlase) activity. Mol Microbiol 6:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Fisman DN, Lim S, Wellenius GA, Johnson C, Britz P, Gaskins M, Maher J, Mittleman MA, Spain CV, Haas CN, Newbern C (2005) It's not the heat, it’s the humidity: wet weather increases legionellosis risk in the greater Philadelphia metropolitan area. J Infect Dis 192:2066–2073

    Article  PubMed  Google Scholar 

  • Fiumefreddo R, Zaborsky R, Haeuptle J, Christ-Crain M, Trampuz A, Steffen I, Frei R, Muller B, Schuetz P (2009) Clinical predictors for Legionella in patients presenting with community-acquired pneumonia to the emergency department. BMC Pulm Med 9:4

    Article  PubMed  CAS  Google Scholar 

  • Flannery B, Gelling LB, Vugia DJ, Weintraub JM, Salerno JJ, Conroy MJ, Stevens VA, Rose CE, Moore MR, Fields BS, Besser RE (2006) Reducing Legionella colonization in water systems with monochloramine. Emerg Infect Dis 12:588–596

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  PubMed  CAS  Google Scholar 

  • Flendrie M, Jeurissen M, Franssen M, Kwa D, Klaassen C, Vos F (2011) Septic arthritis caused by Legionella dumoffii in a patient with systemic lupus erythematosus-like disease. J Clin Microbiol 49:746–749

    Article  PubMed  CAS  Google Scholar 

  • Flesher AR, Ito S, Mansheim BJ, Kasper DL (1979) The cell envelope of the Legionnaires' disease bacterium. Morphologic and biochemical characteristics. Ann Intern Med 90:628–630

    PubMed  CAS  Google Scholar 

  • Flieger A, Gong S, Faigle M, Mayer HA, Kehrer U, Mubotter J, Bartmann P, Neumeister B (2000) Phospholipase A secreted by Legionella pneumophila destroys alveolar surfactant phospholipids. FEMS Microbiol Lett 188:129–133

    Article  PubMed  CAS  Google Scholar 

  • Flieger A, Gong S, Faigle M, Stevanovic S, Cianciotto NP, Neumeister B (2001) Novel lysophospholipase A secreted by Legionella pneumophila. J Bacteriol 183:2121–2124

    Article  PubMed  CAS  Google Scholar 

  • Flieger A, Neumeister B, Cianciotto NP (2002) Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect Immun 70:6094–6106

    Article  PubMed  CAS  Google Scholar 

  • Fliermans CB, Cherry WB, Orrison LH, Smith SJ, Tison DL, Pope DH (1981) Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 41:9–16

    PubMed  CAS  Google Scholar 

  • Fliermans CB, Cherry WB, Orrison LH, Thacker L (1979) Isolation of Legionella pneumophila from nonepidemic-related aquatic habitats. Appl Environ Microbiol 37:1239–1242

    PubMed  CAS  Google Scholar 

  • Fontana MF, Banga S, Barry KC, Shen X, Tan Y, Luo ZQ, Vance RE (2011) Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog 7:e1001289

    Article  PubMed  CAS  Google Scholar 

  • Forest KT (2008) The type II secretion arrowhead: the structure of GspI-GspJ-GspK. Nat Struct Mol Biol 15:428–430

    Article  PubMed  CAS  Google Scholar 

  • Fortier A, de Chastellier C, Balor S, Gros P (2007) Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell Microbiol 9:910–923

    Article  PubMed  CAS  Google Scholar 

  • Fortier A, Diez E, Gros P (2005) Naip5/Birc1e and susceptibility to Legionella pneumophila. Trends Microbiol 13:328–335

    Article  PubMed  CAS  Google Scholar 

  • Foy HM, Broome CV, Hayes PS, Allan I, Cooney MK, Tobe R (1979) Legionnaires’ disease in a prepaid medical-care group in Seattle 1963–1975. Lancet 1:767–770

    Article  PubMed  CAS  Google Scholar 

  • Franco IS, Shohdy N, Shuman HA (2012) The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 8:e1002546

    Article  PubMed  CAS  Google Scholar 

  • Franco IS, Shuman HA (2012) A pathogen’s journey in the host cell: bridges between actin and traffic. Bioarchitecture 2:38–42

    Article  PubMed  Google Scholar 

  • Franco IS, Shuman HA, Charpentier X (2009) The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol 11:1435–1443

    Article  PubMed  CAS  Google Scholar 

  • Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ, Sharrar RG, Harris J, Mallison GF, Martin SM, McDade JE, Shepard CC, Brachman PS (1977) Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med 297:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Freudenmann M, Kurz S, von Baum H, Reick D, Schreff AM, Essig A, Luck C, Gonser T, Brockmann SO, Harter G, Eberhardt B, Embacher A, Holler C (2011) Interdisciplinary management of a large Legionella outbreak in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 54:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Fry AM, Rutman M, Allan T, Scaife H, Salehi E, Benson R, Fields B, Nowicki S, Parrish MK, Carpenter J, Brown E, Lucas C, Horgan T, Koch E, Besser RE (2003) Legionnaires’ disease outbreak in an automobile engine manufacturing plant. J Infect Dis 187:1015–1018

    Article  PubMed  Google Scholar 

  • Fry NK, Afshar B, Bellamy W, Underwood AP, Ratcliff RM, Harrison TG (2007) Identification of Legionella spp. by 19 European reference laboratories: results of the European Working Group for Legionella Infections External Quality Assessment Scheme using DNA sequencing of the macrophage infectivity potentiator gene and dedicated online tools. Clin Microbiol Infect 13:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Fry NK, Warwick S, Saunders NA, Embley TM (1991) The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J Gen Microbiol 137:1215–1222

    PubMed  CAS  Google Scholar 

  • Fu KP, Neu HC (1979) Inactivation of beta-lactam antibiotics by Legionella pneumophila. Antimicrob Agents Chemother 16:561–564

    Article  PubMed  CAS  Google Scholar 

  • Furuhata K, Ogihara K, Ishizaki N, Oonaka K, Yoshida Y, Goto K, Hara M, Miyamoto H, Yoshida S, Fukuyama M (2010) Identification of Legionella londiniensis isolated from hot spring water samples in Shizuoka, Japan, and cytotoxicity of isolates. J Infect Chemother 16:367–371

    Article  PubMed  Google Scholar 

  • Fuse ET, Tateda K, Kikuchi Y, Matsumoto T, Gondaira F, Azuma A, Kudoh S, Standiford TJ, Yamaguchi K (2007) Role of toll-like receptor 2 in recognition of Legionella pneumophila in a murine pneumonia model. J Med Microbiol 56:305–312

    Article  PubMed  CAS  Google Scholar 

  • Gabay JE, Blake M, Niles WD, Horwitz MA (1985) Purification of Legionella pneumophila major outer membrane protein and demonstration that it is a porin. J Bacteriol 162:85–91

    PubMed  CAS  Google Scholar 

  • Gal-Mor O, Segal G (2003) The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog 34:187–194

    Article  PubMed  CAS  Google Scholar 

  • Galka F, Wai SN, Kusch H, Engelmann S, Hecker M, Schmeck B, Hippenstiel S, Uhlin BE, Steinert M (2008) Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun 76:1825–1836

    Article  PubMed  CAS  Google Scholar 

  • Gao L-Y, Susa M, Ticac B, Abu Kwaik Y (1999) Heterogeneity in intracellular replication and cytopathogenicity of Legionella pneumophila and Legionella micdadei in mammalian and protozoan cells. Microb Pathogen 27:273–287

    Article  CAS  Google Scholar 

  • Gao LY, Abu Kwaik Y (1999a) Activation of caspase 3 during Legionella pneumophila-induced apoptosis. Infect Immun 67:4886–4894

    PubMed  CAS  Google Scholar 

  • Gao LY, Abu Kwaik Y (1999b) Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect Immun 67:862–870

    PubMed  CAS  Google Scholar 

  • Gao LY, Harb OS, Abu Kwaik Y (1997) Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 65:4738–4746

    PubMed  CAS  Google Scholar 

  • Gao LY, Stone BJ, Brieland JK, Abu Kwaik Y (1998) Different fates of Legionella pneumophila pmi and mil mutants within macrophages and alveolar epithelial cells. Microb Pathog 25:291–306

    Article  PubMed  CAS  Google Scholar 

  • Garcia MT, Jones S, Pelaz C, Millar RD, Abu Kwaik Y (2007) Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ Microbiol 9:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fulgueiras A, Navarro C, Fenoll D, Garcia J, Gonzales-Diego P, Jimenez-Bunuelas T, Rodriguez M, Lopez R, Pacheco F, Ruiz J, Segovia M, Balandron B, Pelaz C (2003) Legionnaires’ disease outbreak in Murcia Spain. Emerg Infect Dis 9:915–921

    Article  PubMed  Google Scholar 

  • Garduno RA, Faulkner G, Trevors MA, Vats N, Hoffman PS (1998a) Immunolocalization of Hsp60 in Legionella pneumophila. J Bacteriol 180:505–513

    PubMed  CAS  Google Scholar 

  • Garduno RA, Garduno E, Hoffman PS (1998b) Surface-associated Hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66:4602–4610

    PubMed  CAS  Google Scholar 

  • Gast RJ, Moran DM, Dennett MR, Wurtsbaugh WA, Amaral-Zettler LA (2011) Amoebae and Legionella pneumophila in saline environments. J Water Health 9:37–52

    Article  PubMed  Google Scholar 

  • Ge J, Xu H, Li T, Zhou Y, Zhang Z, Li S, Liu L, Shao F (2009) A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci USA 106:13725–13730

    Article  PubMed  CAS  Google Scholar 

  • Gebran SJ, Newton C, Yamamoto Y, Widen R, Klein TW, Friedman H (1994) Macrophage permissiveness for Legionella pneumophila growth modulated by iron. Infect Immun 62:564–568

    PubMed  CAS  Google Scholar 

  • George JR, Pine L, Reeves MW, Harrell WK (1980) Amino acid requirements of Legionella pneumophila. J Clin Microbiol 11:286–291

    PubMed  CAS  Google Scholar 

  • Gerhardt H, Walz MJ, Faigle M, Northoff H, Wolburg H, Neumeister B (2000) Localization of Legionella bacteria within ribosome-studded phagosomes is not restricted to Legionella pneumophila. FEMS Microbiol Lett 192:145–152

    Article  PubMed  CAS  Google Scholar 

  • Geukens N, De Buck E, Meyen E, Maes L, Vranckx L, Van Mellaert L, Anne J, Lammertyn E (2006) The type II signal peptidase of Legionella pneumophila. Res Microbiol 157:836–841

    Article  PubMed  CAS  Google Scholar 

  • Giao MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW (2011) Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol 11:57

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  PubMed  CAS  Google Scholar 

  • Gilmour MW, Bernard K, Tracz DM, Olson AB, Corbett CR, Burdz T, Ng B, Wiebe D, Broukhanski G, Boleszczuk P, Tang P, Jamieson F, Van Domselaar G, Plummer FA, Berry JD (2007) Molecular typing of a Legionella pneumophila outbreak in Ontario Canada. J Med Microbiol 56:336–341

    Article  PubMed  CAS  Google Scholar 

  • Ginevra C, Duclos A, Vanhems P, Campese C, Forey F, Lina G, Che D, Etienne J, Jarraud S (2009) Host-related risk factors and clinical features of community-acquired Legionnaires disease due to the Paris and Lorraine endemic strains, 1998-2007, France. Clin Infect Dis 49:184–191

    Article  PubMed  Google Scholar 

  • Ginevra C, Forey F, Campese C, Reyrolle M, Che D, Etienne J, Jarraud S (2008) Lorraine strain of Legionella pneumophila serogroup 1, France. Emerg Infect Dis 14:673–675

    Article  PubMed  Google Scholar 

  • Girard LP, Gregson DB (2007) Community-acquired lung abscess caused by Legionella micdadei in a myeloma patient receiving thalidomide treatment. J Clin Microbiol 45:3135–3137

    Article  PubMed  Google Scholar 

  • Girard R, Pedron T, Uematsu S, Balloy V, Chignard M, Akira S, Chaby R (2003) Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci 116:293–302

    Article  PubMed  CAS  Google Scholar 

  • Glavin FL, Winn WC, Jr, Craighead JE (1979) Ultrastructure of lung in Legionnaires’ disease. Observations of three biopsies done during the Vermont epidemic. Ann. Int. Med. 90:555–559

    CAS  Google Scholar 

  • Glick TH, Gregg MB, Berman B, Mallison G, Rhodes WW, Jr, Kassanoff I (1978) Pontiac fever. An epidemic of unknown etiology in a health department: I. Clinical and epidemiologic aspects. Am J Epidemiol 107:149–160

    PubMed  CAS  Google Scholar 

  • Glockner G, Albert-Weissenberger C, Weinmann E, Jacobi S, Schunder E, Steinert M, Hacker J, Heuner K (2008) Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol 298:411–428

    Article  PubMed  CAS  Google Scholar 

  • Gobin I, Newton PR, Hartland EL, Newton HJ (2009) Infections caused by nonpneumophila species of Legionella. Rev Med Microbiol 20:1–11

    Article  Google Scholar 

  • Goldberg DJ, Wrench JG, Collier PW, Emslie JA, Fallon RJ, Forbes GI, McKay TM, Macpherson AC, Markwick TA, Reid D (1989) Lochgoilhead fever: outbreak of non-pneumonic legionellosis due to Legionella micdadei. Lancet 1:316–318

    Article  PubMed  CAS  Google Scholar 

  • Gomez Valero L, Runsiok C, Cazalet C, Buchrieser C (2011) Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol 2:208

    Article  PubMed  Google Scholar 

  • Gomez-Valero L, Rusniok C, Jarraud S, Vacherie B, Rouy Z, Barbe V, Medigue C, Etienne J, Buchrieser C (2011) Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes. BMC Genomics 12:536

    Article  PubMed  CAS  Google Scholar 

  • Gorman GW, Feeley JC, Steigerwalt A, Edelstein PH, Moss CW, Brenner DJ (1985) Legionella anisa: a new species of Legionella isolated from potable waters and a cooling tower. Appl Environ Microbiol 49:305–309

    PubMed  CAS  Google Scholar 

  • Gosselin F, Duval JF, Simonet J, Ginevra C, Gaboriaud F, Jarraud S, Mathieu L (2011) Impact of the virulence-associated MAb3/1 epitope on the physicochemical surface properties of Legionella pneumophila sg1: an issue to explain infection potential? Colloids Surf B Biointerfaces 82:283–290

    Article  PubMed  CAS  Google Scholar 

  • Graham FF, White PS, Harte DJ, Kingham SP (2011) Changing epidemiological trends of legionellosis in New Zealand, 1979–2009. Epidemiol Infect 140:1–16

    Google Scholar 

  • Granados A, Podzamczer D, Gudiol F, Manresa F (1989) Pneumonia due to Legionella pneumophila and pneumococcal pneumonia: similarities and differences on presentation. Eur Respir J 2:130–134

    PubMed  CAS  Google Scholar 

  • Gray JJ, Ward KN, Warren RE, Farrington M (1991) Serological cross-reaction between Legionella pneumophila and Citrobacter freundii in indirect immunofluorescence and rapid microagglutination tests. J Clin Microbiol 29:200–201

    PubMed  CAS  Google Scholar 

  • Green PN, Pirrie RS (1993) A laboratory apparatus for the generation and biocide efficacy testing of Legionella biofilms. J Appl Bacteriol 74:388–393

    Article  PubMed  CAS  Google Scholar 

  • Greig JE, Carnie JA, Tallis GF, Ryan NJ, Tan AG, Gordon IR, Zwolak B, Leydon JA, Guest CS, Hart WG (2004) An outbreak of Legionnaires' disease at the Melbourne Aquarium, April 2000: investigation and case-control studies. Med J Aust 180:566–572

    PubMed  Google Scholar 

  • Gubler JG, Schorr M, Gaia V, Zbinden R, Altwegg M (2001) Recurrent soft tissue abscesses caused by Legionella cincinnatiensis. J Clin Microbiol 39:4568–4570

    Article  PubMed  CAS  Google Scholar 

  • Gudiol C, Garcia-Vidal C, Fernandez-Sabe N, Verdaguer R, Llado L, Roca J, Gil-Vernet S, Carratala J (2009) Clinical features and outcomes of Legionnaires’ disease in solid organ transplant recipients. Transpl Infect Dis 11:78–82

    Article  PubMed  CAS  Google Scholar 

  • Guerrieri E, Bondi M, Sabia C, de Niederhausern S, Borella P, Messi P (2008) Effect of bacterial interference on biofilm development by Legionella pneumophila. Curr Microbiol 57:532–536

    Article  PubMed  CAS  Google Scholar 

  • Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA (2008) Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 10:1460–1474

    Article  PubMed  CAS  Google Scholar 

  • Habyarimana F, Price CT, Santic M, Al-Khodor S, Kwaik YA (2009) Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun 78:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  PubMed  CAS  Google Scholar 

  • Haenssler E, Isberg RR (2011) Control of host cell phosphorylation by Legionella pneumophila. Front Microbio 2:doi: 10.3389/fmicb.2011.00064

    Google Scholar 

  • Hagele S, Kohler R, Merkert H, Schleicher M, Hacker J, Steinert M (2000) Dictyostelium discoideum: a new host model system for intracellular pathogens of the genus Legionella. Cell Microbiol 2:165–171

    Article  PubMed  CAS  Google Scholar 

  • Hales LM, Shuman HA (1999a) Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect Immun 67:3662–3666

    PubMed  CAS  Google Scholar 

  • Hales LM, Shuman HA (1999b) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181:4879–4889

    PubMed  CAS  Google Scholar 

  • Haley CE, Cohen ML, Halter J, Meyer RD (1979) Nosocomial Legionnaires’ disease: a continuing common-source epidemic at Wadsworth Medical Center. Ann Intern Med 90:583–586

    PubMed  CAS  Google Scholar 

  • Hammer BK, Swanson MS (1999) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33:721–731

    Article  PubMed  CAS  Google Scholar 

  • Hammer BK, Tateda ES, Swanson MS (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44:107–118

    Article  PubMed  CAS  Google Scholar 

  • Han JH, Nguyen JC, Harada S, Baddour LM, Edelstein PH (2010) Relapsing Legionella pneumophila cellulitis: a case report and review of the literature. J Infect Chemother 16:439–442

    Article  PubMed  CAS  Google Scholar 

  • Harada E, Iida K, Shiota S, Nakayama H, Yoshida S (2010) Glucose metabolism in Legionella pneumophila: dependence on the Entner-Doudoroff pathway and connection with intracellular bacterial growth. J Bacteriol 192:2892–2899

    Article  PubMed  CAS  Google Scholar 

  • Harb OS, Abu Kwaik Y (1998) Identification of the aspartate-beta-semialdehyde dehydrogenase gene of Legionella pneumophila and characterization of a null mutant. Infect Immun 66:1898–1903

    PubMed  CAS  Google Scholar 

  • Harf C, Monteil H (1988) Interactions between free-living amoebae and Legionella in the environment. Wat Sci Tech 20:235–239

    Google Scholar 

  • Harris A, Lally M, Albrecht M (1998) Legionella bozemanii pneumonia in three patients with AIDS. Clin Infect Dis 27:97–99

    Article  PubMed  CAS  Google Scholar 

  • Harrison TG, Afshar B, Doshi N, Fry NK, Lee JV (2009) Distribution of Legionella pneumophila serogroups, monoclonal antibody subgroups and DNA sequence types in recent clinical and environmental isolates from England and Wales (2000-2008). Eur J Clin Microbiol Infect Dis 28:781–791

    Article  PubMed  CAS  Google Scholar 

  • Harrison TG, Doshi N, Fry NK, Joseph CA (2007) Comparison of clinical and environmental isolates of Legionella pneumophila obtained in the UK over 19 years. Clin Microbiol Infect 13:78–85

    Article  PubMed  CAS  Google Scholar 

  • Harrison TG, Saunders NA (1994) Taxonomy and typing of legionellae. Rev Med Microbiol 5:79–90

    Article  Google Scholar 

  • Harrison TG, Taylor AG (1982) Diagnosis of Legionella pneumophila infections by means of formolised yolk sac antigens. J Clin Pathol 35:211–214

    Article  PubMed  CAS  Google Scholar 

  • Hasselmann M, Vuillemin E, Maurier F, Lutun P, Montiel H, Tempe JD (1983) Formes graves de la maladie des legionnaires: a propos de huit observations. J Med Strasbourg 14:705–708

    Google Scholar 

  • Haupt TE, Heffernan RT, Kazmierczak JJ, Nehls-Lowe H, Rheineck B, Powell C, Leonhardt KK, Chitnis AS, Davis JP (2012) An outbreak of legionnaires disease associated with a decorative water wall fountain in a hospital. Infect Control Hosp Epidemiol 33:185–191

    Article  PubMed  Google Scholar 

  • Hawn TR, Berrington WR, Smith IA, Uematsu S, Akira S, Aderem A, Smith KD, Skerrett SJ (2007) Altered inflammatory responses in TLR5-deficient mice infected with Legionella pneumophila. J Immunol 179:6981–6987

    PubMed  CAS  Google Scholar 

  • Hawn TR, Smith KD, Aderem A, Skerrett SJ (2006) Myeloid differentiation primary response gene (88)- and toll-like receptor 2-deficient mice are susceptible to infection with aerosolized Legionella pneumophila. J Infect Dis 193:1693–1702

    Article  PubMed  CAS  Google Scholar 

  • Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A (2005) Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires' disease. Proc Natl Acad Sci USA 102:2487–2489

    Article  PubMed  CAS  Google Scholar 

  • Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J Exp Med 198:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Hay J, Seal DV, Billcliffe B, Freer JH (1995) Non-culturable Legionella pneumophila associated with Acanthamoeba castellanii: detection of the bacterium using DNA amplification and hybridization. J Appl Bacteriol 78:61–65

    Article  PubMed  CAS  Google Scholar 

  • Hayden RT, Uhl JR, Qian X, Hopkins MK, Aubry MC, Limper AH, Lloyd RV, Cockerill FR (2001) Direct detection of Legionella species from bronchoalveolar lavage and open lung biopsy specimens: comparison of LightCycler PCR, in situ hybridization, direct fluorescence antigen detection, and culture. J Clin Microbiol 39:2618–2626

    Article  PubMed  CAS  Google Scholar 

  • Hebert GA, Steigerwalt AG, Brenner DJ (1980) Legionella micdadei species nova: classification of a third species of Legionella associated with human pneumonia. Curr Microbiol 3:255–257

    Article  Google Scholar 

  • Heidtman M, Chen EJ, Moy MY, Isberg RR (2009) Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248

    Article  PubMed  CAS  Google Scholar 

  • Helbig JH, Benson RF, Pelaz C, Jacobs E, Luck PC (2007) Identification and serotyping of atypical Legionella pneumophila strains isolated from human and environmental sources. J Appl Microbiol 102:100–105

    Article  PubMed  CAS  Google Scholar 

  • Helbig JH, Bernander S, Castellani Pastoris M, Etienne J, Gaia V, Lauwers S, Lindsay D, Luck PC, Marques T, Mentula S, Peeters MF, Pelaz C, Struelens M, Uldum SA, Wewalka G, Harrison TG (2002) Pan-European study on culture-proven Legionnaires’ disease: distribution of Legionella pneumophila serogroups and monoclonal subgroups. Eur J Clin Microbiol Infect Dis 21:710–716

    Article  PubMed  CAS  Google Scholar 

  • Helbig JH, Engelstadter T, Maiwald M, Uldum SA, Witzleb W, Luck PC (1999) Diagnostic relevance of the detection of Legionella DNA in urine samples by the polymerase chain reaction. Eur J Clin Microbiol Infect Dis 18:716–722

    Article  PubMed  CAS  Google Scholar 

  • Helbig JH, Konig B, Knospe H, Bubert B, Yu C, Luck CP, Riboldi-Tunnicliffe A, Hilgenfeld R, Jacobs E, Hacker J, Fischer G (2003a) The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells. Biol Chem 384:125–137

    Article  PubMed  CAS  Google Scholar 

  • Helbig JH, Luck PC, Knirel YA, Witzleb W, Zahringer U (1995a) Molecular characterization of a virulence-associated epitope on the lipopolysaccharide of Legionella pneumophila serogroup 1. Epidemiol Infect 115:71–78

    Article  PubMed  CAS  Google Scholar 

  • Helbig JH, Luck PC, Steinert M, Jacobs E, Witt M (2001a) Immunolocalization of the Mip protein of intracellularly and extracellularly grown Legionella pneumophila. Lett Appl Microbiol 32:83–88

    Article  PubMed  CAS  Google Scholar 

  • Helbig JH, Ludwig B, Luck PC, Groh A, Witzleb W, Hacker J (1995b) Monoclonal antibodies to Legionella Mip proteins recognize genus-and species-specific epitopes. Clin Diagn Lab Immunol 2:160–165

    PubMed  CAS  Google Scholar 

  • Helbig JH, Uldum SA, Bernander S, Luck PC, Wewalka G, Abraham B, Gaia V, Harrison TG (2003b) Clinical utility of urinary antigen detection for diagnosis of community-acquired, travel-associated, and nosocomial legionnaires’ disease. J Clin Microbiol 41:838–840

    Article  PubMed  Google Scholar 

  • Helbig JH, Uldum SA, Luck PC, Harrison TG (2001b) Detection of Legionella pneumophila antigen in urine samples by the BinaxNOW immunochromatographic assay and comparison with both Binax Legionella Urinary Enzyme Immunoassay (EIA) and Biotest Legionella Urin Antigen EIA. J Med Microbiol 50:509–516

    PubMed  CAS  Google Scholar 

  • Heller R, Holler C, Sussmuth R, Gundermann KO (1998) Effect of salt concentration and temperature on survival of Legionella pneumophila. Letts Appl Microbiol 26:64–68

    Article  CAS  Google Scholar 

  • Henke M, Seidel KM (1986) Association between Legionella pneumophila and amoebae in water. Isr J Med Sci 22:690–695

    PubMed  CAS  Google Scholar 

  • Herpers BL, de Jongh BM, van der Zwaluw K, van Hannen EJ (2003) Real-time PCR assay targets the 23S-5S spacer for direct detection and differentiation of Legionella spp. and Legionella pneumophila. J Clin Microbiol 41:4815–4816

    Article  PubMed  CAS  Google Scholar 

  • Herrmann V, Eidner A, Rydzewski K, Bladel I, Jules M, Buchrieser C, Eisenreich W, Heuner K (2011) GamA is a eukaryotic-like glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int J Med Microbiol 301:133–139

    Article  PubMed  CAS  Google Scholar 

  • Hervet E, Charpentier X, Vianney A, Lazzaroni JC, Gilbert C, Atlan D, Doublet P (2011) Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun 79:1936–1950

    Article  PubMed  CAS  Google Scholar 

  • Herwaldt LA, Gorman GW, McGrath T, Toma S, Brake B, Hightower AW, Jones J, Reingold AL, Boxer PA, Tang PW, Moss CW, Wilkinson H, Brenner DJ, Steigerwalt AG, Broome CV (1984) A new Legionella species, Legionella feeleii species nova, causes Pontiac fever in an automobile plant. Ann Inter Med 100:333–338

    CAS  Google Scholar 

  • Heuner K, Bender-Beck L, Brand BC, Luck PC, Mann KH, Marre R, Ott M, Hacker J (1995) Cloning and genetic characterization of the flagellum subunit gene (flaA) of Legionella pneumophila serogroup 1. Infect Immun 63:2499–2507

    PubMed  CAS  Google Scholar 

  • Heuner K, Brand BC, Hacker J (1999) The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors. FEMS Microbiol Lett 175:69–77

    Article  PubMed  CAS  Google Scholar 

  • Heuner K, Dietrich C, Skriwan C, Steinert M, Hacker J (2002) Influence of the alternative sigma(28) factor on virulence and flagellum expression of Legionella pneumophila. Infect Immun 70:1604–1608

    Article  PubMed  CAS  Google Scholar 

  • Heuner K, Hacker J, Brand BC (1997) The alternative sigma factor sigma28 of Legionella pneumophila restores flagellation and motility to an Escherichia coli fliA mutant. J Bacteriol 179:17–23

    PubMed  CAS  Google Scholar 

  • Heuner K, Steinert M (2003) The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int J Med Microbiol 293:133–143

    Article  PubMed  CAS  Google Scholar 

  • Hickey EK, Cianciotto NP (1994) Cloning and sequencing of the Legionella pneumophila fur gene. Gene 143:117–121

    Article  PubMed  CAS  Google Scholar 

  • Hickey EK, Cianciotto NP (1997) An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun 65:133–143

    PubMed  CAS  Google Scholar 

  • Hicks LA, Rose CE, Jr, Fields BS, Drees ML, Engel JP, Jenkins PR, Rouse BS, Blythe D, Khalifah AP, Feikin DR, Whitney CG (2007) Increased rainfall is associated with increased risk for legionellosis. Epidemiol Infect 135:811–817

    Article  PubMed  CAS  Google Scholar 

  • Higa F, Edelstein PH (2001) Potential virulence role of the Legionella pneumophila ptsP ortholog. Infect Immun 69:4782–4789

    Article  PubMed  CAS  Google Scholar 

  • Higa F, Koide M, Furugen M, Akamine M, Hibiya K, Haranaga S, Yara S, Tateyama M, Yamane N, Fujita J (2008) Detection of Legionella pneumophila serogroup 1 antigen in respiratory samples using an immunochromatographic membrane test. J Microbiol Methods 74:121–122

    Article  PubMed  CAS  Google Scholar 

  • High AS, Torosian SD, Rodgers FG (1993) Cloning, nucleotide sequence and expression in Escherichia coli of a gene (ompM) encoding a 25 kDa major outer-membrane protein (MOMP) of Legionella pneumophila. J Gen Microbiol 139:1715–1721

    PubMed  CAS  Google Scholar 

  • Highsmith AK, Mackel DC, Baine WB, Anderson RL, Fraser DW (1978) Observations of endotoxin-like activity associated with the Legionnaires’ disease bacterium. Curr Microbiol 1:315–317

    Article  Google Scholar 

  • Hilbi H, Haas A (2012) Secretive bacterial pathogens and the secretory pathway. Traffic 13(9):1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Hilbi H, Hoffmann C, Harrison CF (2011) Legionella spp. outdoors: colonization, communication, and persistence. Environ Microbiol Reports 3:286–296

    Article  CAS  Google Scholar 

  • Hilbi H, Jarraud S, Hartland E, Buchrieser C (2010) Update on Legionnaires’ disease: pathogenesis, epidemiology, detection and control. Mol Microbiol 76:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hilbi H, Segal G, Shuman HA (2001) Icm/Dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 42:603–617

    Article  PubMed  CAS  Google Scholar 

  • Hindahl MS, Iglewski BH (1987) Cloning and expression of a common Legionella outer membrane antigen in Escherichia coli. Microb Pathogen 2:91–99

    Article  CAS  Google Scholar 

  • Hindre T, Bruggemann H, Buchrieser C, Hechard Y (2008) Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology 154:30–41

    Article  PubMed  CAS  Google Scholar 

  • Hlady WG, Mullen RC, Mintz CS, Shelton BG, Hopkins RS, Daikos GL (1993) Outbreak of Legionnaire’s disease linked to a decorative fountain by molecular epidemiology. Am J Epidemiol 138:555–562

    PubMed  CAS  Google Scholar 

  • Hoffman PS, Houston L, Butler CA (1990) Legionella pneumophila htpAB heat shock operon: nucleotide sequence and expression of the 60-kilodalton antigen in L. pneumophila-infected HeLa cells. Infect Immun 58:3380–3387

    PubMed  CAS  Google Scholar 

  • Hoffman PS, Ripley M, Weeratna R (1992a) Cloning and nucleotide sequence of a gene (ompS) encoding the major outer membrane protein of Legionella pneumophila. J Bacteriol 174:914–920

    PubMed  CAS  Google Scholar 

  • Hoffman PS, Seyer JH, Butler CA (1992b) Molecular characterization of the 28- and 31-kilodalton subunits of the Legionella pneumophila major outer membrane protein. J Bacteriol 174:908–913

    PubMed  CAS  Google Scholar 

  • Hofmann A, Beaulieu Y, Bernard F, Rico P (2009) Fulminant legionellosis in two patients treated with infliximab for Crohn’s disease: case series and literature review. Can J Gastroenterol 23:829–833

    PubMed  Google Scholar 

  • Holden EP, Winkler HH, Wood DO, Leinbach ED (1984) Intracellular growth of Legionella pneumophila within Acanthamoeba castellanii Neff. Infect Immun 45:18–24

    PubMed  CAS  Google Scholar 

  • Hookey JV, Saunders NA, Fry NK, Birtles RJ, Harrison TG (1996) Phylogeny of Legionellaceae based on small-subunit ribosomal DNA sequences and proposal of Legionella lytica comb. nov. for Legionella-like amoebal pathogens. Int J Syst Bacteriol 46:526–531

    Article  CAS  Google Scholar 

  • Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1992) Interactions between macrophages and Legionella pneumophila. Curr Topics Microbiol Immunol 181:265–282

    Article  CAS  Google Scholar 

  • Horwitz MA, Maxfield FR (1984) Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol 99:1936–1943

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1980) Legionnaire’ disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest 66:441–450

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1981) Interaction of the Legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody, and complement. J Exp Med 153:386–397

    Article  PubMed  CAS  Google Scholar 

  • Hovel-Miner G, Faucher SP, Charpentier X, Shuman HA (2010) ArgR-regulated genes are derepressed in the Legionella-containing vacuole. J Bacteriol 192:4504–4516

    Article  PubMed  CAS  Google Scholar 

  • Hovel-Miner G, Pampou S, Faucher SP, Clarke M, Morozova I, Morozov P, Russo JJ, Shuman HA, Kalachikov S (2009) SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol 191:2461–2473

    Article  PubMed  CAS  Google Scholar 

  • Hsu BM, Huang CC, Chen JS, Chen NH, Huang JT (2011) Comparison of potentially pathogenic free-living amoeba hosts by Legionella spp. in substrate-associated biofilms and floating biofilms from spring environments. Water Res 45:5171–5183

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Yuan Z, Heron BA, Gray BR, Eglezos S, Bates JR, Savill J (2006) Distribution of 19 major virulence genes in Legionella pneumophila serogroup 1 isolates from patients and water in Queensland. (Australia) J Med Microbiol 55:993–997

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Boyd D, Amyot WM, Hempstead AD, Luo ZQ, O'Connor TJ, Chen C, Machner M, Montminy T, Isberg RR (2011) The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 13:227–245

    Article  PubMed  CAS  Google Scholar 

  • Hubber A, Roy CR (2010a) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  PubMed  CAS  Google Scholar 

  • Hubber A, Roy CR (2010b) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  PubMed  CAS  Google Scholar 

  • Hughes MS, Steele TW (1994) Occurrence and distribution of Legionella species in composted plant materials. Appl Environ Microbiol 60:2003–2005

    PubMed  CAS  Google Scholar 

  • Huhn GD, Adam B, Ruden R, Hilliard L, Kirkpatrick P, Todd J, Crafts W, Passaro D, Dworkin MS (2005) Outbreak of travel-related Pontiac fever among hotel guests illustrating the need for better diagnostic tests. J Travel Med 12:173–179

    Article  PubMed  Google Scholar 

  • Husmann LK, Johnson W (1994) Cytotoxicity of extracellular Legionella pneumophila. Infect Immun 62:2111–2114

    PubMed  CAS  Google Scholar 

  • Hussong D, Colwell RR, O'Brien M, Weiss E, Pearson AD, Weiner RM, Burge WD (1987) Viable Legionella pneumophila not detectable by culture on agar media. Biotechnology 5:947–950

    Article  Google Scholar 

  • Huston WM, Naylor J, Cianciotto NP, Jennings MP, McEwan AG (2008) Functional analysis of the multi-copper oxidase from Legionella pneumophila. Microbes Infect 10:497–503

    Article  PubMed  CAS  Google Scholar 

  • Hwang MG, Katayama H, Ohgaki S (2006) Effect of intracellular resuscitation of Legionella pneumophila in Acanthamoeba polyphage cells on the antimicrobial properties of silver and copper. Environ Sci Technol 40:7434–7439

    Article  PubMed  CAS  Google Scholar 

  • Igel L, Helbig JH, Luck PC (2004) Isolation and characterization of a nonfluorescent strain of Legionella parisiensis. J Clin Microbiol 42:2877–2878

    Article  PubMed  Google Scholar 

  • Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365–369

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Fujino Y, Onodera M, Kikuchi S, Shozushima T, Ogino N, Mori K, Oikawa H, Koeda Y, Ueda H, Takahashi T, Terui K, Nakadate T, Aoki H, Endo S (2011) Tsunami lung. J Anesth doi 10.1007/s00540-011-1273-6

    Google Scholar 

  • Iovieno A, Ledee DR, Miller D, Alfonso EC (2010) Detection of bacterial endosymbionts in clinical Acanthamoeba isolates. Ophthalmology 117:445–452

    Article  PubMed  Google Scholar 

  • Isberg RR, O'Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24

    Article  PubMed  CAS  Google Scholar 

  • Ivanov SS, Charron G, Hang HC, Roy CR (2010) Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem 285:34686–34698

    Article  PubMed  CAS  Google Scholar 

  • Ivanov SS, Roy CR (2009) Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/Icm system. Cell Microbiol 11:261–278

    Article  PubMed  CAS  Google Scholar 

  • Izu K, Yoshida S, Miyamoto H, Chang B, Ogawa M, Yamamoto H, Goto Y, Taniguchi H (1999) Grouping of 20 reference strains of Legionella species by the growth ability within mouse and guinea pig macrophages. FEMS Immunol Med Microbiol 26:61–68

    Article  PubMed  CAS  Google Scholar 

  • Jacobi S, Heuner K (2003) Description of a putative type I secretion system in Legionella pneumophila. Int J Med Microbiol 293:349–358

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RF, Locksley RM, Wilson CB, Haas JE, Klebanoff SJ (1984) Interaction of primate alveolar macrophages and Legionella pneumophila. J Clin Invest 73:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KL, Miceli MH, Tarrand JJ, Kontoyiannis DP (2008) Legionella pneumonia in cancer patients. Medicine (Baltimore) 87:152–159

    Article  Google Scholar 

  • Jain B, Brand BC, Luck PC, Di Berardino M, Dimroth P, Hacker J (1996) An oxaloacetate decarboxylase homologue protein influences the intracellular survival of Legionella pneumophila. FEMS Microbiol Lett 145:273–279

    Article  PubMed  CAS  Google Scholar 

  • Jain V, Kumar M, Chatterji D (2006) ppGpp stringent response and survival. J Microbiol 44:1–10

    PubMed  CAS  Google Scholar 

  • James BW, Mauchline WS, Dennis PJ, Keevil CW (1997) A study of iron acquisition mechanisms of Legionella pneumophila grown in chemostat culture. Curr Microbiol 34:238–243

    Article  PubMed  CAS  Google Scholar 

  • James BW, Mauchline WS, Fitzgeorge RB, Dennis PJ, Keevil CW (1995) Influence of iron-limited continuous culture on physiology and virulence of Legionella pneumophila. Infect Immun 63:4224–4230

    PubMed  CAS  Google Scholar 

  • Jameson-Lee M, Garduno RA, Hoffman PS (2011) DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol Microbiol 80:835–852

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA, Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  • Jank T, Böhmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K (2012) Domain organization of Legionella effector SetA. Cell Microbiol 14:852–868

    Article  PubMed  CAS  Google Scholar 

  • Jarraud S, Etienne J (2012) Caractéistiques clinique et diagnostic des cas de légionellose. In: Jarraud S, Freney J (ed) Legionella, vol 2. Lavoisier, Paris, pp 147–177

    Google Scholar 

  • Jaulhac B, Nowicki M, Bornstein N, Meunier O, Prevost G, Piemont Y, Fleurette J, Monteil H (1992) Detection of Legionella spp. in bronchoalveolar lavage fluids by DNA amplification. J Clin Microbiol 30:920–924

    PubMed  CAS  Google Scholar 

  • Jepras RI, Fitzgeorge RB, Baskerville A (1985) A comparison of virulence of two strains of Legionella pneumophila based on experimental aerosol infection of guinea pigs. J Hyg 95:29–38

    Article  CAS  Google Scholar 

  • Jernigan DB, Hofmann J, Cetron MS, Genese CA, Nuorti JP, Fields BS, Benson RF, Carter RJ, Edelstein PH, Guerrero IC, Paul SM, Lipman HB, Breiman R (1996) Outbreak of Legionnaires’ disease among cruise ship passengers exposed to a contaminated whirlpool spa. Lancet 347:494–499

    Article  PubMed  CAS  Google Scholar 

  • Jinno S, Pulido S, Pien BC (2009) First reported United States case of Legionella pneumophila serogroup 1 pneumonia in a patient receiving anti-tumor necrosis factor-a therapy. Hawaii Med J 68:109–112

    PubMed  Google Scholar 

  • Johnson TL, Abendroth J, Hol WG, Sandkvist M (2006) Type II secretion: from structure to function. FEMS Microbiol Lett 255:175–186

    Article  PubMed  CAS  Google Scholar 

  • Johnson W, Varner L, Poch M (1991) Acquisition of iron by Legionella pneumophila: role of iron reductase. Infect Immun 59:2376–2381

    PubMed  CAS  Google Scholar 

  • Joly JR, Boissinot M, Duchaine J, Duval M, Rafrafi J, Ramsay D, Letarte R (1984) Ecological distribution of Legionellaceae in the Quebec City area. Can J Microbiol 30:63–67

    Article  PubMed  CAS  Google Scholar 

  • Jonas D, Rosenbaum A, Weyrich S, Bhakdi S (1995) Enzyme-linked immunoassay for detection of PCR-amplified DNA of legionellae in bronchoalveolar fluid. J Clin Microbiol 33:1247–1252

    PubMed  CAS  Google Scholar 

  • Jones TF, Benson RF, Brown EW, Rowland JR, Crosier SC, Schaffner W (2003) Epidemiologic investigation of a restaurant-associated outbreak of Pontiac fever. Clin Infect Dis 37:1292–1297

    Article  PubMed  Google Scholar 

  • Joseph C (2002) New outbreak of Legionnaires’ disease in the United Kingdom. BMJ 325:347–348

    Article  PubMed  Google Scholar 

  • Joseph CA (2004) Legionnaires’ disease in Europe 2000-2002. Epidemiol Infect 132:417–424

    Article  PubMed  CAS  Google Scholar 

  • Joseph CA, Dedman D, Birtles R, Watson JM, Bartlett CL (1994a) Legionnaires’ disease surveillance: England and Wales, 1993. Commun Dis Rep CDR Rev 4:R109–R111

    PubMed  CAS  Google Scholar 

  • Joseph CA, Watson JM, Harrison TG, Bartlett CL (1994b) Nosocomial Legionnaires’ disease in England and Wales, 1980-92. Epidemiol Infect 112:329–345

    Article  PubMed  CAS  Google Scholar 

  • Joseph CA, Harrison TG, Ilijic-Car D, Bartlett CL (1997) Legionnaires’ disease in residents of England and Wales: 1996. Commun Dis Rep CDR Rev 7:R153–R159

    PubMed  CAS  Google Scholar 

  • Joseph CA, Harrison TG, Ilijic-Car D, Bartlett CL (1998) Legionnaires’ disease in residents of England and Wales: 1997. Commun Dis Public Health 1:252–258

    PubMed  CAS  Google Scholar 

  • Joseph CA, Hutchinson EJ, Dedman D, Birtles RJ, Watson JM, Bartlett CL (1995) Legionnaires’ disease surveillance: England and Wales 1994. Commun Dis Rep CDR Rev 5:R180–R183

    PubMed  CAS  Google Scholar 

  • Joseph CA, Ricketts KD (2010) Legionnaires disease in Europe 2007-2008. Euro Surveill 15:19493

    PubMed  CAS  Google Scholar 

  • Joseph CA, Ricketts KD, Yadav R, Patel S (2010) Travel-associated Legionnaires disease in Europe in 2009. Euro Surveill 15:19683

    PubMed  CAS  Google Scholar 

  • Joshi AD, Swanson MS (1999) Comparative analysis of Legionella pneumophila and Legionella micdadei virulence traits. Infect Immun 67:4134–4142

    PubMed  CAS  Google Scholar 

  • Joshi AD, Swanson MS (2011) Secrets of a successful pathogen: Legionella resistance to progression along the autophagic pathway. Front Microbiol 2:138

    Article  PubMed  CAS  Google Scholar 

  • Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386

    Article  PubMed  CAS  Google Scholar 

  • Kagan JC, Roy CR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954

    Article  PubMed  CAS  Google Scholar 

  • Kagan JC, Stein MP, Pypaert M, Roy CR (2004) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Kampfer P (2012) Systematics of prokaryotes: the state of the art. Anton Van Leeuwenhoek 101:3–11

    Article  Google Scholar 

  • Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  PubMed  CAS  Google Scholar 

  • Katz SM, Brodsky I, Kahn SB (1979) Legionnaires’ disease: ultrastructural appearance of the agent in a lung biopsy specimen. Arch Pathol Lab Med 103:261–264

    PubMed  CAS  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102:17136–17141

    Article  PubMed  CAS  Google Scholar 

  • Kazandjian D, Chiew R, Gilbert GL (1997) Rapid diagnosis of Legionella pneumophila serogroup 1 infection with the Binax enzyme immunoassay urinary antigen test. J Clin Microbiol 35:954–956

    PubMed  CAS  Google Scholar 

  • Keevil CW (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47:105–116

    PubMed  CAS  Google Scholar 

  • Kikuhara H, Ogawa M, Miyamoto H, Nikaido Y, Yoshida S (1994) Intracellular multiplication of Legionella pneumophila in Tetrahymena thermophila. Sangyo Ika Daigaku Zasshi 16:263–275

    PubMed  CAS  Google Scholar 

  • Kilvington S, Price J (1990) Survival of Legionella pneumophila within cysts of Acanthamoeba polyphaga following chlorine exposure. J Appl Bacteriol 68:519–525

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Sohn JW, Park DW, Park SC, Chun BC (2003) Characterization of a lipoprotein common to Legionella species as a urinary broad-spectrum antigen for diagnosis of Legionnaires’ disease. J Clin Microbiol 41:2974–2979

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Tateda K, Ishii Y, Horikawa M, Miyairi S, Gotoh N, Ishiguro M, Yamaguchi K (2009) Pseudomonas aeruginosa Las quorum sensing autoinducer suppresses growth and biofilm production in Legionella species. Microbiology 155:1934–1939

    Article  PubMed  CAS  Google Scholar 

  • Kinch LN, Yarbrough ML, Orth K, Grishin NV (2009) Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS One 4:e5818

    Article  PubMed  CAS  Google Scholar 

  • King CH, Fields BS, Shotts EB, Jr, White EH (1991) Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells. Infect Immun 59:758–763

    PubMed  CAS  Google Scholar 

  • King CH, Shotts EB, Wooley RE, Porter KG (1988) Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl Environ Microbiol 54:3023–3033

    PubMed  CAS  Google Scholar 

  • Kirby JE, Vogel JP, Andrews HL, Isberg RR (1998) Evidence for pore-forming ability by Legionella pneumophila. Mol Microbiol 27:323–336

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto RA, Kastello MD, White JD, Shirey FG, McGann VG, Larson EW, Hedlund KW (1979) In vitro interaction between normal cynolmolgus monkey alveolar macrophages and Legionnaires disease bacteria. Infect Immun 25:761–763

    PubMed  CAS  Google Scholar 

  • Klein GW (1980) Cross-reaction to Legionella pneumophila antigen in sera with elevated titers to Pseudomonas pseudomallei. J Clin Microbiol 11:27–29

    PubMed  CAS  Google Scholar 

  • Knirel YA, Moll H, Helbig JH, Zahringer U (1997) Chemical characterization of a new 5,7-diamino-3,5,7,9-tetradeoxynonulosonic acid released by mild acid hydrolysis of the Legionella pneumophila serogroup 1 lipopolysaccharide. Carbohydr Res 304:77–79

    Article  PubMed  CAS  Google Scholar 

  • Ko KS, Hong SK, Lee HK, Park MY, Kook YH (2003) Molecular evolution of the dotA gene in Legionella pneumophila. J Bacteriol 185:6269–6277

    Article  PubMed  CAS  Google Scholar 

  • Ko KS, Lee HK, Park MY, Lee KH, Yun YJ, Woo SY, Miyamoto H, Kook YH (2002) Application of RNA polymerase beta-subunit gene (rpoB) sequences for the molecular differentiation of Legionella species. J Clin Microbiol 40:2653–2658

    Article  PubMed  CAS  Google Scholar 

  • Ko KS, Miyamoto H, Lee HK, Park MY, Fukuda K, Park BJ, Kook YH (2006) Genetic diversity of Legionella pneumophila inferred from rpoB and dotA sequences. Clin Microbiol Infect 12:254–261

    Article  PubMed  CAS  Google Scholar 

  • Kohler R, Bubert A, Goebel W, Steinert M, Hacker J, Bubert B (2000) Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila. Mol Gen Genet 262:1060–1069

    Article  PubMed  CAS  Google Scholar 

  • Kohler RB, Winn WCJ, Wheat LJ (1984) Onset and duration of urinary antigen excretion in Legionnaires disease. J Clin Microbiol 20:605–607

    PubMed  CAS  Google Scholar 

  • Koide M, Higa F, Tateyama M, Sakugawa H, Saito A (2004) Comparison of polymerase chain reaction and two urinary antigen detection kits for detecting Legionella in clinical samples. Eur J Clin Microbiol Infect Dis 23:221–223

    Article  PubMed  CAS  Google Scholar 

  • Komura T, Ikeda T, Hoshino K, Shibamura A, Nishikawa Y (2012) Caenorhabditis elegans as an alternative model to study senescence of host defense and the prevention by immunonutrition. Adv Exp Med Biol 710:19–27

    Article  PubMed  CAS  Google Scholar 

  • Komura T, Yasui C, Miyamoto H, Nishikawa Y (2010) Caenorhabditis elegans as an alternative model host for Legionella pneumophila, and protective effects of Bifidobacterium infantis. Appl Environ Microbiol 76:4105–4108

    Article  PubMed  CAS  Google Scholar 

  • Konig C, Hebestreit H, Valenza G, Abele-Horn M, Speer CP (2005) Legionella waltersii–a novel cause of pneumonia? Acta Paediatr 94:1505–1507

    Article  PubMed  Google Scholar 

  • Kool JL, Warwick MC, Pruckler JM, Brown EW, Butler JC (1998) Outbreak of Legionnaires' disease at a bar after basement flooding. Lancet 351:1030

    Article  PubMed  CAS  Google Scholar 

  • Koronakis V, Eswaran J, Hughes C (2004) Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489

    Article  PubMed  CAS  Google Scholar 

  • Korotkov KV, Gonen T, Hol WG (2011) Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci 36:433–443

    Article  PubMed  CAS  Google Scholar 

  • Korvick JA, Yu VL (1987) Legionnaire’ disease: an emerging surgical problem. Ann Thorac Surg 43:341–347

    Article  PubMed  CAS  Google Scholar 

  • Korvick JA, Yu VL, Fang GD (1987) Legionella species as hospital-acquired respiratory pathogens. Semin Respir Infect 2:34–47

    PubMed  CAS  Google Scholar 

  • Kozak NA, Benson RF, Brown E, Alexander NT, Taylor TH, Jr, Shelton BG, Fields BS (2009) Distribution of lag-1 alleles and sequence-based types among Legionella pneumophila serogroup 1 clinical and environmental isolates in the United States. J Clin Microbiol 47:2525–2535

    Article  PubMed  CAS  Google Scholar 

  • Kozak NA, Buss M, Lucas CE, Frace M, Govil D, Travis T, Olsen-Rasmussen M, Benson RF, Fields BS (2010) Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol 192:1030–1044

    Article  PubMed  CAS  Google Scholar 

  • Krinos C, High AS, Rodgers FG (1999) Role of the 25 kDa major outer membrane protein of Legionella pneumophila in attachment to U-937 cells and its potential as a virulence factor for chick embryos. J Appl Microbiol 86:237–244

    Article  PubMed  CAS  Google Scholar 

  • Kubiak X, Dervins-Ravault D, Pluvinage B, Chaffotte AF, Gomez-Valero L, Dairou J, Busi F, Dupret JM, Buchrieser C, Rodrigues-Lima F (2012) Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 445:219–229

    PubMed  CAS  Google Scholar 

  • Kubori T, Hyakutake A, Nagai H (2008) Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Kubori T, Nagai A (2011) Bacterial effector-involved temporal and spatial regulation by hijack of the host ubiquitin pathway. Front Microbiol 2:145

    Article  PubMed  CAS  Google Scholar 

  • Kubori T, Shinzawa N, Kanuka H, Nagai H (2010) Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6:e1001216

    Article  PubMed  CAS  Google Scholar 

  • Kuiper MW, Wullings BA, Akkermans AD, Beumer RR, van der Kooij D (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833

    Article  PubMed  CAS  Google Scholar 

  • Kura F, Suzuki K, Watanabe H, Akamatsu Y, Amano F (1994) Difference in Legionella pneumophila growth permissiveness between J774.1 murine macrophage-like JA-4 cells and lipopolysaccharide (LPS)-resistant mutant cells, LPS1916, after stimulation with LPS. Infect Immun 62:5419–5423

    PubMed  CAS  Google Scholar 

  • Kuroki H, Miyamoto H, Fukuda K, Iihara H, Kawamura Y, Ogawa M, Wang Y, Ezaki T, Taniguchi H (2007) Legionella impletisoli sp. nov. and Legionella yabuuchiae sp. nov., isolated from soils contaminated with industrial wastes in Japan. Syst Appl Microbiol 30:273–279

    Article  PubMed  CAS  Google Scholar 

  • Kusnetsov J, Neuvonen LK, Korpio T, Uldum SA, Mentula S, Putus T, Tran Minh NN, Martimo KP (2010) Two Legionnaires' disease cases associated with industrial waste water treatment plants: a case report. BMC Infect Dis 10:343

    Article  PubMed  Google Scholar 

  • La Scola B, Birtles RJ, Greub G, Harrison TJ, Ratcliff RM, Raoult D (2004) Legionella drancourtii sp. nov., a strictly intracellular amoebal pathogen. Int J Syst Evol Microbiol 54:699–703

    Article  PubMed  CAS  Google Scholar 

  • La Scola B, Boyadjiev I, Greub G, Khamis A, Martin C, Raoult D (2003) Amoeba-resisting bacteria and ventilator-associated pneumonia. Emerg Infect Dis 9:815–821

    PubMed  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  PubMed  CAS  Google Scholar 

  • Lam MC, Ang LW, Tan AL, James L, Goh KT (2011) Epidemiology and control of legionellosis. (Singapore) Emerg Infect Dis 17:1209–1215

    Article  PubMed  Google Scholar 

  • Lammertyn E, Anne J (2004) Protein secretion in Legionella pneumophila and its relation to virulence. FEMS Microbiol Lett 238:273–279

    PubMed  CAS  Google Scholar 

  • Lamoth F, Greub G (2010) Amoebal pathogens as emerging causal agents of pneumonia. FEMS Microbiol Rev 34:260–280

    Article  PubMed  CAS  Google Scholar 

  • Lang C, Flieger A (2011) Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Eur J Cell Biol 90:903–912

    Article  PubMed  CAS  Google Scholar 

  • Lasheras A, Boulestreau H, Rogues AM, Ohayon-Courtes C, Labadie JC, Gachie JP (2006) Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am J Infect Control 34:520–525

    Article  PubMed  Google Scholar 

  • Lau HY, Ashbolt NJ (2009) The role of biofilms and protozoa in Legionella pathogenesis: implications for drinking water. J Appl Microbiol 107:368–378

    Article  PubMed  CAS  Google Scholar 

  • Lavocat MP, Berthier JC, Rousson A, Bornstein N, Hartemann E (1987) Pulmonary legionnaires’ disease in a child following drowning in fresh water. Presse Med 16:780

    PubMed  CAS  Google Scholar 

  • Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224:1–15

    Article  PubMed  CAS  Google Scholar 

  • Lawrence C, Reyrolle M, Dubrou S, Forey F, Decludt B, Goulvestre C, Matsiota-Bernard P, Etienne J, Nauciel C (1999) Single clonal origin of a high proportion of Legionella pneumophila serogroup 1 isolates from patients and the environment in the area of Paris, France, over a 10-year period. J Clin Microbiol 37:2652–2655

    PubMed  CAS  Google Scholar 

  • Le Negrate G, Faustin B, Welsh K, Loeffler M, Krajewska M, Hasegawa P, Mukherjee S, Orth K, Krajewskin S, Godzik A, Guiney DG, Reed JC (2008) Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-kappaB, suppresses IkappaBalpha ubiquitination and modulates innate immune responses. J Immunol 80:5045–5056

    Google Scholar 

  • LeBlanc JJ, Brassinga AK, Ewann F, Davidson RJ, Hoffman PS (2008) An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the alkyl hydroperoxide reductase (ahpC2D) operon. J Bacteriol 190:3444–3455

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc JJ, Davidson RJ, Hoffman PS (2006) Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila. J Bacteriol 188:6235–6244

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Shim JI, Kim HE, Yu JY, Kang YH (2010) Distribution of Legionella species from environmental water sources of public facilities and genetic diversity of L. pneumophila serogroup 1 in South Korea. Appl Environ Microbiol 76:6547–6554

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Caplivski D, Wu M, Huprikar S (2009) Pneumonia due to Legionella feeleii: case report and review of the literature. Transpl Infect Dis 11:337–340

    Article  PubMed  CAS  Google Scholar 

  • Lee JV, West AA (1991) Survival and growth of Legionella species in the environment. J Appl Bacteriol (Suppl) 70:121S–129S

    Article  Google Scholar 

  • Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

    Article  PubMed  CAS  Google Scholar 

  • Lehtola MJ, Torvinen E, Kusnetsov J, Pitkanen T, Maunula L, von Bonsdorff CH, Martikainen PJ, Wilks SA, Keevil CW, Miettinen IT (2007) Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associated biofilms grown under high-shear turbulent flow. Appl Environ Microbiol 73:2854–2859

    Article  PubMed  CAS  Google Scholar 

  • Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58:1186–1202

    Article  PubMed  CAS  Google Scholar 

  • Lettinga KD, Verbon A, Weverling GJ, Schellekens JF, Den Boer JW, Yzerman EP, Prins J, Boersma WG, van Ketel RJ, Prins JM, Speelman P (2002) Legionnaires’ disease at a Dutch flower show: prognostic factors and impact of therapy. Emerg Infect Dis 8:1448–1454

    Article  PubMed  Google Scholar 

  • Levet-Paulo M, Lazzaroni JC, Gilbert C, Atlan D, Doublet P, Vianney A (2011) The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3'-5')-cyclic dimeric GMP synthesis. J Biol Chem 286:31136–31144

    Article  PubMed  CAS  Google Scholar 

  • Levi A, Folcher M, Jenal U, Shuman HA (2011) Cyclic diguanylate signaling proteins control intracellular growth of Legionella pneumophila. MBio 2:e00316–10

    Article  PubMed  CAS  Google Scholar 

  • Levi MH, Pasculle AW, Dowling JN (1987) Role of the alveolar macrophage in host defense and immunity to Legionella micdadei pneumonia in the guinea pig. Microb Pathogen 2:269–282

    Article  CAS  Google Scholar 

  • Li JS, O'Brien ED, Guest C (2002) A review of national legionellosis surveillance in Australia, 1991 to 2000. Commun Dis Intell 26:461–468

    Google Scholar 

  • Lieberman D, Shmarkov O, Gelfer Y, Ben-Yaakov M, Lazarovich Z, Boldur I (2002) Serological evidence of Legionella species infection in acute exacerbation of COPD. Eur Respir J 19:392–397

    Article  PubMed  CAS  Google Scholar 

  • Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF, Monack DM, Tsolis RM, Vance RE (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Liles MR, Aber Scheel T, Cianciotto NP (2000) Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 182:749–757

    Article  PubMed  CAS  Google Scholar 

  • Liles MR, Edelstein PH, Cianciotto NP (1999) The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol Microbiol 31:959–970

    Article  PubMed  CAS  Google Scholar 

  • Liles MR, Viswanathan VK, Cianciotto NP (1998) Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 66:1776–1782

    PubMed  CAS  Google Scholar 

  • Lindsay DS, Abraham WH, Findlay W, Christie P, Johnston F, Edwards GF (2004) Laboratory diagnosis of legionnaires' disease due to Legionella pneumophila serogroup 1: comparison of phenotypic and genotypic methods. J Med Microbiol 53:183–187

    Article  PubMed  Google Scholar 

  • Lindsay DS, Brown AW, Brown DJ, Pravinkumar J, Anderson E, Edwards GF (2012) Legionella longbeachae serogroup 1 infections linked to Potting Compost. J Med Microbiol 61:218–222

    Article  PubMed  CAS  Google Scholar 

  • Lippmann J, Rothenburg S, Deigendesch N, Eitel J, Meixenberger K, van Laak V, Slevogt H, N’Guessan PD, Hippenstiel S, Chakraborty T, Flieger A, Suttorp N, Opitz B (2008) IFNbeta responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cell Microbiol 10:2579–2588

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Lin YE, Stout JE, Hwang CC, Vidic RD, Yu VL (2006) Effect of flow regimes on the presence of Legionella within the biofilm of a model plumbing system. J Appl Microbiol 101:437–442

    Article  PubMed  CAS  Google Scholar 

  • Lo Presti F, Riffard S, Jarraud S, Le Gallou F, Richet H, Vandenesch F, Etienne J (2000) Isolation of Legionella oakridgensis from two patients with pleural effusion living in the same geographical area. J Clin Microbiol 38:3128–3130

    PubMed  CAS  Google Scholar 

  • Lo Presti F, Riffard S, Meugnier H, Reyrolle M, Lasne Y, Grimont PA, Grimont F, Benson RF, Brenner DJ, Steigerwalt AG, Etienne J, Freney J (2001) Legionella gresilensis sp. nov. and Legionella beliardensis sp. nov., isolated from water in France. Int J Syst Evol Microbiol 51:1949–1957

    Article  PubMed  CAS  Google Scholar 

  • Lo Presti F, Riffard S, Meugnier H, Reyrolle M, Lasne Y, Grimont PA, Grimont F, Vandenesch F, Etienne J, Fleurette J, Freney J (1999) Legionella taurinensis sp. nov., a new species antigenically similar to Legionella spiritensis. Int J Syst Bacteriol 49:397–403

    Article  PubMed  Google Scholar 

  • Lo Presti F, Riffard S, Vandenesch F, Reyrolle M, Ronco E, Ichai P, Etienne J (1997) The first clinical isolate of Legionella parisiensis, from a liver transplant patient with pneumonia. J Clin Microbiol 35:1706–1709

    PubMed  CAS  Google Scholar 

  • Loeb M, Simor AE, Mandell L, Krueger P, McArthur M, James M, Walter S, Richardson E, Lingley M, Stout J, Stronach D, McGeer A (1999) Two nursing home outbreaks of respiratory infection with Legionella sainthelensi. J Am Geriatr Soc 47:547–552

    PubMed  CAS  Google Scholar 

  • Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C (2010) The Legionella pneumophila F-box protein Lpp 2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 12:1272–91

    Article  PubMed  CAS  Google Scholar 

  • Loridant S, Lagier JC, La Scola B (2011) Identification of Legionella feeleii cellulitis. Emerg Infect Dis 17:145–146

    Article  PubMed  Google Scholar 

  • Losick VP, Haenssler E, Moy MY, Isberg RR (2010) LnaB: a Legionella pneumophila activator of NF-kappaB. Cell Microbiol 12:1087–1097

    Article  CAS  Google Scholar 

  • Lowry PW, Blankenship RJ, Gridley W, Troup NJ, Tompkins LS (1991) A cluster of Legionella sternal-wound infections due to postoperative topical exposure to contaminated tap water. N Engl J Med 324:109–113

    Article  PubMed  CAS  Google Scholar 

  • Lowry PW, Tompkins LS (1993) Nosocomial legionellosis: a review of pulmonary and extrapulmonary syndromes. Am J Infect Control 21:21–27

    Article  PubMed  CAS  Google Scholar 

  • Lucas CE, Brown E, Fields BS (2006) Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology 152:3569–3573

    Article  PubMed  CAS  Google Scholar 

  • Lück CP (2008) Diagnostics and clinical disease treatment. In: Heuner KJ, Swanson MS (ed) Legionella: molecular microbiology. Academic, Caister, pp 19–34

    Google Scholar 

  • Luck PC, Helbig JH, Ehret W, Ott M (1995) Isolation of a Legionella pneumophila strain serologically distinguishable from all known serogroups. Zbl Bakt 282:35–39

    CAS  Google Scholar 

  • Lück PC, Helbig JH, von Baum H, Marre R (2006) Diagnostics and clinical disease treatment: usefulness of microbiological diagnostic methods for detection of Legionella infections. In: Cianciotto NP, Abu Kwaik Y, Edelstein PH, Fields BS, Geary DF, Harrison TG, Joseph CA, Ratcliff RM, Stout JE, Swanson MS (ed) Legionella: state of the Art 30 years after its recognition, vol 2. ASM Press, Washington, DC

    Google Scholar 

  • Luck PC, Jacobs E, Roske I, Schroter-Bobsin U, Dumke R, Gronow S (2010) Legionella dresdenensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 60:2557–2562

    Article  PubMed  CAS  Google Scholar 

  • Ludwig B, Rahfeld J, Schmidt B, Mann K, Wintermeyer E, Fischer G, Hacker J (1994) Characterization of Mip proteins of Legionella pneumophila. FEMS Microbiol Lett 118:23–30

    Article  PubMed  CAS  Google Scholar 

  • Ludwig B, Schmid A, Marre R, Hacker J (1991) Cloning, genetic analysis, and nucleotide sequence of a determinant coding for a 19-kilodalton peptidoglycan-associated protein (Ppl) of Legionella pneumophila. Infect Immun 59:2515–2521

    PubMed  CAS  Google Scholar 

  • Ludwig W, Stackebrandt E (1983) A phylogenetic analysis of Legionella. Arch Microbiol 135:45–50

    Article  PubMed  CAS  Google Scholar 

  • Luhrmann A, Nogueira CV, Carey KL, Roy CR (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci USA 107:18997–9001

    Article  PubMed  CAS  Google Scholar 

  • Luneberg E, Zahringer U, Knirel YA, Steinmann D, Hartmann M, Steinmetz I, Rohde M, Kohl J, Frosch M (1998) Phase-variable expression of lipopolysaccharide contributes to the virulence of Legionella pneumophila. J Exp Med 188:49–60

    Article  PubMed  CAS  Google Scholar 

  • Luo ZQ, Isberg RR (2004) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA 101:841–6

    Article  PubMed  CAS  Google Scholar 

  • Lurie-Weinberger MN, Gomez-Valero L, Merault N, Glockner G, Buchrieser C, Gophna U (2010) The origins of eukaryotic-like proteins in Legionella pneumophila. Int J Med Microbiol 300:470–81

    Article  PubMed  CAS  Google Scholar 

  • Luttichau HR, Vinther C, Uldum SA, Moller J, Faber M, Jensen JS (1998) An outbreak of Pontiac fever among children following use of a whirlpool. Clin Infect Dis 26:1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Lynch D, Fieser N, Gloggler K, Forsbach-Birk V, Marre R (2003) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219:241–8

    Article  PubMed  CAS  Google Scholar 

  • Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318:974–977

    Article  PubMed  CAS  Google Scholar 

  • Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11:47–56

    Article  PubMed  CAS  Google Scholar 

  • Mahoney FJ, Hoge CW, Farley TA, Barbaree JM, Breiman RF, Benson RF, McFarland LM (1992) Communitywide outbreak of Legionnaires’ disease associated with a grocery store mist machine. J Infect Dis 165:736–739

    Article  PubMed  CAS  Google Scholar 

  • Maiwald M, Schill M, Stockinger C, Helbig JH, Luck PC, Witzleb W, Sonntag HG (1995) Detection of Legionella DNA in human and guinea pig urine samples by the polymerase chain reaction. Eur J Clin Microbiol Infect Dis 14:25–33

    Article  PubMed  CAS  Google Scholar 

  • Mampel J, Spirig T, Weber SS, Haagensen JA, Molin S, Hilbi H (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885–2895

    Article  PubMed  CAS  Google Scholar 

  • Mangione EJ, Remis RS, Tait KA, McGee HB, Gorman GW, Wentworth BB, Baron PA, Hightower AW, Barbaree JM, Broome CV (1985) An outbreak of Pontiac fever related to whirlpool use, Michigan 1982. JAMA 253:535–539

    Article  PubMed  CAS  Google Scholar 

  • Manz W, Amann R, Szewzyk R, Szewzyk U, Stenstrom TA, Hutzler P, Schleifer KH (1995) In situ identification of Legionellaceae using 16S rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy. Microbiology 141:29–39

    Article  PubMed  CAS  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JH, Olson KE, Islam N, Pinsky DJ, Levi R (2005) Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection. Semin Thromb Hemost 31:234–246

    Article  PubMed  CAS  Google Scholar 

  • Marra A, Blander SJ, Horwitz MA, Shuman HA (1992) Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci USA 89:9607–9611

    Article  PubMed  CAS  Google Scholar 

  • Marra A, Horwitz MA, Shuman HA (1990) The HL-60 model for the interaction of human macrophages with the Legionnaires' disease bacterium. J Immunol 144:2738–2744

    PubMed  CAS  Google Scholar 

  • Marrao G, Verissimo A, Bowker RG, daCosta MS (1993) Biofilms as major sources of Legionella spp. in hydrothermal areas and their disperion into stream water. FEMS Microbiol Ecol 12:25–33

    Google Scholar 

  • Marrie TJ, Haldane D, MacDonald S, Clarke K, Fanning C, Le Fort-Jost S, Bezanson G, Joly J (1991) Control of endemic nosocomial Legionnaires' disease by using sterile potable water for high risk patients. Epidemiol Infect 107:591–605

    Article  PubMed  CAS  Google Scholar 

  • Marrie TJ, Raoult D, La Scola B, Birtles RJ, de Carolis E (2001) Legionella-like and other amoebal pathogens as agents of community-acquired pneumonia. Emerg Infect Dis 7:1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Marston BJ, Lipman HB, Breiman RF (1994) Surveillance for Legionnaires’ disease: risk factors for morbidity and mortality. Arch Intern Med 154:2417–2422

    Article  PubMed  CAS  Google Scholar 

  • Marston BJ, Plouffe JF, File TM, Jr, Hackman BA, Salstrom SJ, Lipman HB, Kolczak MS, Breiman RF (1997) Incidence of community-acquired pneumonia requiring hospitalization. Results of a population-based active surveillance Study in Ohio. The Community-Based Pneumonia Incidence Study Group. Arch Intern Med 157:1709–1718

    Article  PubMed  CAS  Google Scholar 

  • Maruta K, Miyamoto H, Hamada T, Ogawa M, Taniguchi H, Yoshida S (1998) Entry and intracellular growth of Legionella dumoffii in alveolar epithelial cells. Am J Respir Crit Care Med 157:1967–1974

    PubMed  CAS  Google Scholar 

  • Massis LM, Zamboni DS (2011) Innate immunity to Legionella pneumophila. Front Microbiol 2:109

    Article  PubMed  CAS  Google Scholar 

  • Matsiota-Bernard P, Pitsouni E, Legakis N, Nauciel C (1994) Evaluation of commercial amplification kit for detection of Legionella pneumophila in clinical specimens. J Clin Microbiol 32:1503–1505

    PubMed  CAS  Google Scholar 

  • Matsiota-Bernard P, Waser S, Vrioni G (2000) Detection of Legionella pneumophila DNA in urine and serum samples from patients with pneumonia. Clin Microbiol Infect 6:223–225

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Fujii S, Shiroiwa R, Amemura-Maekawa J, Chang B, Kura F, Yamauchi K (2010) Isolation of Legionella rubrilucens from a pneumonia patient co-infected with Legionella pneumophila. J Med Microbiol 59:1242–1246

    Article  PubMed  Google Scholar 

  • Matsunaga K, Klein TW, Friedman H, Yamamoto Y (2002) In vitro therapeutic effect of epigallocatechin gallate on nicotine-induced impairment of resistance to Legionella pneumophila infection of established MH-S alveolar macrophages. J Infect Dis 185:229–236

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga K, Klein TW, Newton C, Friedman H, Yamamoto Y (2001) Legionella pneumophila suppresses interleukin-12 production by macrophages. Infect Immun 69:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • McCoy-Simandle K, Stewart CR, Dao J, Debroy S, Rossier O, Bryce PJ, Cianciotto NP (2011) Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect Immun 79:1984–1997

    Article  PubMed  CAS  Google Scholar 

  • McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR (1977) Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Eng J Med 297:1197–1203

    Article  CAS  Google Scholar 

  • McHugh SL, Yamamoto Y, Klein TW, Friedman H (2000) Murine macrophages differentially produce proinflammatory cytokines after infection with virulent vs. avirulent Legionella pneumophila. J Leukoc Biol 67:863–868

    PubMed  CAS  Google Scholar 

  • McKinney RM, Porschen RK, Edelstein PH, Bissett ML, Harris PP, Bondell SP, Steigerwalt AG, Weaver RE, Ein ME, Lindquist DS, Kops RS, Brenner DJ (1981) Legionella longbeachae species nova, another etiologic agent of human pneumonia. Ann Intern Med 94:739–743

    PubMed  CAS  Google Scholar 

  • McNally C, Hackman B, Fields BS, Plouffe JF (2000) Potential importance of Legionella species as etiologies in community acquired pneumonia (CAP). Diagn Microbiol Infect Dis 38:79–82

    Article  PubMed  CAS  Google Scholar 

  • McNealy TL, Forsbach-Birk V, Shi C, Marre R (2005) The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA. J Bacteriol 187:1527–1532

    Article  PubMed  CAS  Google Scholar 

  • Merault N, Rusniok C, Jarraud S, Gomez-Valero L, Cazalet C, Marin M, Brachet E, Aegerter P, Gaillard JL, Etienne J, Herrmann JL, Lawrence C, Buchrieser C (2011) A specific real-time PCR for simultaneous detection and identification of Legionella pneumophila serogroup 1 in water and clinical samples. Appl Environ Microbiol 77:1705–1717

    Article  CAS  Google Scholar 

  • Mercuri PS, Bouillenne F, Boschi L, Lamotte-Brasseur J, Amicosante G, Devreese B, van Beeumen J, Frere JM, Rossolini GM, Galleni M (2001) Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297 T produced in Escherichia coli. Antimicrob Agents Chemother 45:1254–1262

    Article  PubMed  CAS  Google Scholar 

  • Merriam JJ, Mathur R, Maxfield-Boumil R, Isberg RR (1997) Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect Immun 65:2497–2501

    PubMed  CAS  Google Scholar 

  • Messi P, Anacarso I, Bargellini A, Bondi M, Marchesi I, de Niederhausern S, Borella P (2011) Ecological behaviour of three serogroups of Legionella pneumophila within a model plumbing system. Biofouling 27:165–172

    Article  PubMed  CAS  Google Scholar 

  • Meyer R, Rappo U, Glickman M, Seo SK, Sepkowitz K, Eagan J, Small TN (2011) Legionella jordanis in hematopoietic SCT patients radiographically mimicking invasive mold infection. Bone Marrow Transplant 46:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Michel R, Muller KD, Amann R, Schmid EN (1998) Legionella-like slender rods multiplying within a strain of Acanthamoeba sp. isolated from drinking water. Parasitol Res 84:84–88

    Article  PubMed  CAS  Google Scholar 

  • Mintz CS (1999) Gene transfer in Legionella pneumophila. Microbes Infect 1:1203–9

    Article  PubMed  CAS  Google Scholar 

  • Mintz CS, Arnold PI, Johnson W, Schultz DR (1995) Antibody-independent binding of complement component C1q by Legionella pneumophila. Infect Immun 63:4939–4943

    PubMed  CAS  Google Scholar 

  • Mintz CS, Zou CH (1992) Isolation and characterization of a lipopolysaccharide mutant of Legionella pneumophila. FEMS Microbiol Lett 72:249–253

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto H, Jitsurong S, Shiota R, Maruta K, Yoshida S, Yabuuchi E (1997) Molecular determination of infection source of a sporadic Legionella pneumonia case associated with a hot spring bath. Microbiol Immunol 41:197–202

    PubMed  CAS  Google Scholar 

  • Miyamoto H, Maruta K, Ogawa M, Beckers MC, Gros P, Yoshida S (1996) Spectrum of Legionella species whose intracellular multiplication in murine macrophages is genetically controlled by Lgn1. Infect Immun 64:1842–1845

    PubMed  CAS  Google Scholar 

  • Miyamoto H, Taniguchi H, Yoshida S (2003) A simple qualitative assay for intracellular growth of Legionella pneumophila within Acanthamoeba culbertsoni. Kansenshogaku Zasshi 77:343–345

    PubMed  Google Scholar 

  • Mody CH, 3rd, Paine R, Shahrabadi MS, Simon RH, Pearlman E, Eisenstein BI, Toews GB (1993) Legionella pneumophila replicates within rat alveolar epithelial cells. J Infect Dis 167:1138–1145

    Article  PubMed  CAS  Google Scholar 

  • Moffat JF, Edelstein PH, Regula DP, Jr, Cirillo JD, Tompkins LS (1994) Effects of an isogenic Zn-metalloprotease-deficient mutant of Legionella pneumophila in a guinea-pig pneumonia model. Mol Microbiol 12:693–705

    Article  PubMed  CAS  Google Scholar 

  • Moffat JF, Tompkins LS (1992) A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect Immun 60:296–301

    PubMed  CAS  Google Scholar 

  • Moliner C, Fournier PE, Raoult D (2010) Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 34:281–294

    Article  PubMed  CAS  Google Scholar 

  • Moliner C, Raoult D, Fournier PE (2009a) Evidence of horizontal gene transfer between amoeba and bacteria. Clin Microbiol Infect 15:178–180

    Article  PubMed  CAS  Google Scholar 

  • Moliner C, Raoult D, Fournier PE (2009b) Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes. BMC Res Notes 2:51

    Article  PubMed  CAS  Google Scholar 

  • Moll H, Sonesson A, Jantzen E, Marre R, Zahringer U (1992) Identification of 27-oxo-octacosanoic acid and heptacosane-1,27-dioic acid in Legionella pneumophila. FEMS Microbiol Lett 76:1–6

    Article  PubMed  CAS  Google Scholar 

  • Molmeret M, Abu Kwaik Y (2002) How does Legionella pneumophila exit the host cell? Trends Microbiol 10:258–60

    Article  PubMed  CAS  Google Scholar 

  • Molmeret M, Bitar DM, Han L, Kwaik YA (2004) Disruption of the phagosomal membrane and egress of Legionella pneumophila into the cytoplasm during the last stages of intracellular infection of macrophages and Acanthamoeba polyphaga. Infect Immun 72:4040–51

    Article  PubMed  CAS  Google Scholar 

  • Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28

    Article  PubMed  CAS  Google Scholar 

  • Molmeret M, Jarraud S, Mori JP, Pernin P, Forey F, Reyrolle M, Vandenesch F, Etienne J, Farge P (2001) Different growth rates in amoeba of genotypically related environmental and clinical Legionella pneumophila strains isolated from a thermal spa. Epidemiol Infect 126:231–239

    Article  PubMed  CAS  Google Scholar 

  • Molmeret M, Jones S, Santic M, Habyarimana F, Garcia Esteban MT, Abu Kwaik Y (2010) Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ Microbiol 12:704–715

    Google Scholar 

  • Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, Tateda K, Swanson MS (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Molofsky AB, Swanson MS (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40

    Article  PubMed  CAS  Google Scholar 

  • Molofsky AB, Swanson MS (2003) Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50:445–61

    Article  PubMed  CAS  Google Scholar 

  • Monroe KM, McWhirter SM, Vance RE (2009) Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog 5:e1000665

    Article  PubMed  CAS  Google Scholar 

  • Moore MR, Pryor M, Fields B, Lucas C, Phelan M, Besser RE (2006) Introduction of monochloramine into a municipal water system: impact on colonization of buildings by Legionella spp. Appl Environ Microbiol 72:378–383

    Article  PubMed  CAS  Google Scholar 

  • Moritz MM, Flemming HC, Wingender J (2010) Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Health 213:190–197

    Article  PubMed  CAS  Google Scholar 

  • Morozova I, Qu X, Shi S, Asamani G, Greenberg JE, Shuman HA, Russo JJ (2004) Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid 51:127–147

    Article  PubMed  CAS  Google Scholar 

  • Morris GK, Steigerwalt A, Feeley JC, Wong ES, Martin WT, Patton CM, Brenner DJ (1980) Legionella gormanii sp. nov. J Clin Microbiol 12:718–721

    PubMed  CAS  Google Scholar 

  • Mostowy S, Cossart P (2012) Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol 22(6):283–291

    Google Scholar 

  • Mouchtouri V, Velonakis E, Tsakalof A, Kapoula C, Goutziana G, Vatopoulos A, Kremastinou J, Hadjichristodoulou C (2007) Risk factors for contamination of hotel water distribution systems by Legionella species. Appl Environ Microbiol 73:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Muder RR, Yu VL, Fang GD (1989) Community-acquired Legionnaires’ disease. Semin Respir Infect 4:32–39

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106

    Article  PubMed  CAS  Google Scholar 

  • Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–9

    Article  PubMed  Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8:971–977

    Article  PubMed  CAS  Google Scholar 

  • Murdoch DR, Chambers ST (2000) Detection of Legionella DNA in peripheral leukocytes, serum, and urine from a patient with pneumonia caused by Legionella dumoffii. Clin Infect Dis 30:382–383

    Article  PubMed  CAS  Google Scholar 

  • Murdoch DR, Walford EJ, Jennings LC, Light GJ, Schousboe MI, Chereshsky AY, Chambers ST, Town GI (1996) Use of the polymerase chain reaction to detect Legionella DNA in urine and serum samples from patients with pneumonia. Clin Infect Dis 23:475–480

    Article  PubMed  CAS  Google Scholar 

  • Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126

    PubMed  CAS  Google Scholar 

  • Mustafa MI, Al-Marzooq F, How SH, Kuan YC, Ng TH (2011) The use of multiplex real-time PCR improves the detection of the bacterial etiology of community acquired pneumonia. Trop Biomed 28:531–544

    PubMed  CAS  Google Scholar 

  • N'Guessan PD, Etouem MO, Schmeck B, Hocke AC, Scharf S, Vardarova K, Opitz B, Flieger A, Suttorp N, Hippenstiel S (2007) Legionella pneumophila-induced PKCa-, MAPK-, and NF-kB-dependent COX-2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol 292:L267–L277

    Article  PubMed  CAS  Google Scholar 

  • Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, Roy CR (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci USA 102:826–31

    Article  PubMed  CAS  Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682

    Article  PubMed  CAS  Google Scholar 

  • Nagai H, Kubori T (2011) Type IVB secretion systems of Legionella and other Gram-negative bacteria. Front Microbiol 2:136

    Article  PubMed  Google Scholar 

  • Nagai T, Sobajima H, Iwasa M, Tsuzuki T, Kura F, Amemura-Maekawa J, Watanabe H (2003) Neonatal sudden death due to Legionella pneumonia associated with water birth in a domestic spa bath. J Clin Microbiol 41:2227–2229

    Article  PubMed  Google Scholar 

  • Nahapetian K, Challemel O, Beurtin D, Dubrou S, Gounon P, Squinazi F (1991) The intracellular multiplication of Legionella pneumophila in protozoa from hospital plumbing systems. Res Microbiol 142:677–685

    Article  PubMed  CAS  Google Scholar 

  • Nash TW, Libby DM, Horwitz MA (1988) IFN-gamma-activated human alveolar macrophages inhibit the intracellular multiplication of Legionella pneumophila. J Immunol 140:3978–3981

    PubMed  CAS  Google Scholar 

  • Nash TW, Libby DM, Horwitz MA (1984) Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest 74:771–782

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah GK, Riveroll AL, Chong A, Murray LE, Lewis PJ, Garduno RA (2011) Legionella pneumophila requires polyamines for optimal intracellular growth. J Bacteriol 193:4346–4360

    Article  PubMed  CAS  Google Scholar 

  • Naylor J, Cianciotto NP (2004) Cytochrome c maturation proteins are critical for in vivo growth of Legionella pneumophila. FEMS Microbiol Lett 241:249–256

    Article  PubMed  CAS  Google Scholar 

  • Neil K, Berkelman R (2008) Increasing incidence of legionellosis in the United States, 1990-2005: changing epidemiologic trends. Clin Infect Dis 47:591–599

    Article  PubMed  Google Scholar 

  • Neild AL, Roy CR (2003) Legionella reveal dendritic cell functions that facilitate selection of antigens for MHC class II presentation. Immunity 18:813–23

    Article  PubMed  CAS  Google Scholar 

  • Neild AL, Shin S, Roy CR (2005) Activated macrophages infected with Legionella inhibit T cells by means of MyD88-dependent production of prostaglandins. J Immunol 175:8181–90

    PubMed  CAS  Google Scholar 

  • Neumeister B, Faigle M, Sommer M, Zahringer U, Stelter F, Menzel R, Schutt C, Northoff H (1998a) Low endotoxic potential of Legionella pneumophila lipopolysaccharide due to failure of interaction with the monocyte lipopolysaccharide receptor CD14. Infect Immun 66:4151–4157

    PubMed  CAS  Google Scholar 

  • Neumeister B, Kleihauer A, Rossmann V, Fehrenbach E, Faigle M, Baumbach S, Northoff H (1998b) Induction of cytokines and expression of surface receptors in Mono Mac 6 cells after infection with different Legionella species. APMIS 106:319–333

    Article  PubMed  CAS  Google Scholar 

  • Neumeister B, Reiff G, Faigle M, Dietz K, Northoff H, Lang F (2000) Influence of Acanthamoeba castellanii on intracellular growth of different Legionella species in human monocytes. Appl Environ Microbiol 66:914–919

    Article  PubMed  CAS  Google Scholar 

  • Neumeister B, Schoniger S, Faigle M, Eichner M, Dietz K (1997) Multiplication of different Legionella species in Mono Mac 6 cells and in Acanthamoeba castellanii. Appl Environ Microbiol 63:1219–1224

    PubMed  CAS  Google Scholar 

  • Neunuebel MR, Chen Y, Gaspar AH, Backlund PS, Jr, Yergey A, Machner MP (2011) De-AMPylation of the Small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456

    Article  PubMed  CAS  Google Scholar 

  • Newsome AL, Baker RL, Miller RD, Arnold RR (1985) Interactions between Naegleria fowleri and Legionella pneumophila. Infect Immun 50:449–452

    PubMed  CAS  Google Scholar 

  • Newsome AL, Scott TM, Benson RF, Fields BS (1998) Isolation of an amoeba naturally harboring a distinctive Legionella species. Appl Environ Microbiol 64:1688–1693

    PubMed  CAS  Google Scholar 

  • Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298

    Article  PubMed  CAS  Google Scholar 

  • Newton HJ, Sansom FM, Bennett-Wood V, Hartland EL (2006) Identification of Legionella pneumophila-specific genes by genomic subtractive hybridization with Legionella micdadei and identification of lpnE, a gene required for efficient host cell entry. Infect Immun 74:1683–1691

    Article  PubMed  CAS  Google Scholar 

  • Newton HJ, Sansom FM, Dao J, Cazalet C, Bruggemann H, Albert-Weissenberger C, Buchrieser C, Cianciotto NP, Hartland EL (2008) Significant role for ladC in initiation of Legionella pneumophila infection. Infect Immun 76:3075–3085

    Article  PubMed  CAS  Google Scholar 

  • Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J, Cianciotto NP, Hartland EL (2007) Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 75:5575–5585

    Article  PubMed  CAS  Google Scholar 

  • Newton LH, Joseph CA, Hutchinson EJ, Harrison TG, Watson JM, Bartlett CL (1996) Legionnaires' disease surveillance: England and Wales, 1995. Commun Dis Rep CDR Rev 6:R151–5

    PubMed  CAS  Google Scholar 

  • Ng V, Tang P, Fisman DN (2008a) Our evolving understanding of legionellosis epidemiology: learning to count. Clin Infect Dis 47:600–602

    Article  PubMed  Google Scholar 

  • Ng V, Tang P, Jamieson F, Drews SJ, Brown S, Low DE, Johnson CC, Fisman DN (2008b) Going with the flow: legionellosis risk in Toronto, Canada is strongly associated with local watershed hydrology. Ecohealth 5:482–490

    Article  PubMed  Google Scholar 

  • Nguyen TM, Ilef D, Jarraud S, Rouil L, Campese C, Che D, Haeghebaert S, Ganiayre F, Marcel F, Etienne J, Desenclos JC (2006) A community-wide outbreak of legionnaires disease linked to industrial cooling towers–how far can contaminated aerosols spread? J Infect Dis 193:102–111

    Article  PubMed  Google Scholar 

  • Nicolay N, Boland M, Ward M, Hickey L, Collins C, Lynch M, McCarthy M, O'Donnell J (2010) Investigation of Pontiac-like illness in office workers during an outbreak of Legionnaires' disease, 2008. Epidemiol Infect 138:1667–1673

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794:769–781

    Article  PubMed  CAS  Google Scholar 

  • Ninio S, Celli J, Roy CR (2009) A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog 5:e1000278

    Article  PubMed  CAS  Google Scholar 

  • Ninio S, Roy CR (2007) Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 15:372–380

    Article  PubMed  CAS  Google Scholar 

  • Nogueira CV, Lindsten T, Jamieson AM, Case CL, Shin S, Thompson CB, Roy CR (2009) Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog 5:e1000478

    Article  PubMed  CAS  Google Scholar 

  • Nolte FS, Conlin CA, Motley MA (1986) Electrophoretic and serological characterization of the lipopolysaccharides of Legionella pneumophila. Infect Immun 52:676–681

    PubMed  CAS  Google Scholar 

  • Nora T, Lomma M, Gomez-Valero L, Buchrieser C (2009) Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 4:691–701

    Article  PubMed  CAS  Google Scholar 

  • Nozue T, Chikazawa H, Miyanishi S, Shimazaki T, Oka R, Shimazaki S, Miyamoto S (2005) Legionella pneumonia associated with adult respiratory distress syndrome caused by Legionella pneumophila serogroup 3. Intern Med 44:73–78

    Article  PubMed  Google Scholar 

  • Nygard K, Werner-Johansen O, Ronsen S, Caugant DA, Simonsen O, Kanestrom A, Ask E, Ringstad J, Odegard R, Jensen T, Krogh T, Hoiby EA, Ragnhildstveit E, Aaberge IS, Aavitsland P (2008) An outbreak of Legionnaires disease caused by long-distance spread from an industrial air scrubber in Sarpsborg, Norway. Clin Infect Dis 46:61–69

    Article  PubMed  Google Scholar 

  • O'Connell WA, Bangsborg JM, Cianciotto NP (1995) Characterization of a Legionella micdadei mip mutant. Infect Immun 63:2840–2845

    PubMed  Google Scholar 

  • O'Connell WA, Dhand L, Cianciotto NP (1996a) Infection of macrophage-like cells by Legionella species that have not been associated with disease. Infect Immun 64:4381–4384

    PubMed  Google Scholar 

  • O'Connell WA, Hickey EK, Cianciotto NP (1996b) A Legionella pneumophila gene that promotes hemin binding. Infect Immun 64:842–848

    PubMed  Google Scholar 

  • O'Connor TJ, Adepoju Y, Boyd D, Isberg RR (2011) Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci USA 108:14733–14740

    Article  PubMed  CAS  Google Scholar 

  • O'Loughlin RE, Kightlinger L, Werpy MC, Brown E, Stevens V, Hepper C, Keane T, Benson RF, Fields BS, Moore MR (2007) Restaurant outbreak of Legionnaires’ disease associated with a decorative fountain: an environmental and case-control study. BMC Infect Dis 7:93–101

    Article  PubMed  Google Scholar 

  • Ochsner UA, Snyder A, Vasil AI, Vasil ML (2002) Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci USA 99:8312–8317

    Article  PubMed  CAS  Google Scholar 

  • Ogata H, Renesto P, Audic S, Robert C, Blanc G, Fournier PE, Parinello H, Claverie JM, Raoult D, Galvao MA, Mafra C, Chamone CB, Calic SB, Zavala-Velazquez JE, Walker DH, Kelly PJ, Meads N, Theobald A, Fang R, Houhamdi L, Azad AF, Parola P, Sanogo OY, Lerdthusnee K, Zeaiter Z, Chauvancy G, Gonzalez JP, Miller RS, Telford SR, 3rd, Wongsrichanalai C, McDaniel P, Rolain JM, Franc M, Davoust B, La Scola B, Meconi S, Fenollar F, Roux V, Stuhl L, Maurin M, Richter J, Petridou J, Haussinger D, Enea M, de Lamballerie X (2005) The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3:e248. Epub 2005 Jul 5

    Google Scholar 

  • Okada M, Kawano K, Kura F, Amemura-Maekawa J, Watanabe H, Yagita K, Endo T, Suzuki S (2005) The largest outbreak of legionellosis in Japan associated with spa baths: epidemic curve and environmental investigation. Kansenshogaku Zasshi 79:365–374

    PubMed  Google Scholar 

  • Olsen CW, Elverdal P, Jørgensen CS, Uldum SA (2009) Comparison of the sensitivity of the Legionella urinary antigen EIA kits from Binax and Biotest with urine from patients with infections caused by less common serogroups and subgroups of Legionella. Eur J Clin Microbiol Infect Dis 28:817–820

    Article  PubMed  CAS  Google Scholar 

  • Opitz B, Vinzing M, van Laak V, Schmeck B, Heine G, Gunther S, Preissner R, Slevogt H, N'Guessan PD, Eitel J, Goldmann T, Flieger A, Suttorp N, Hippenstiel S (2006) Legionella pneumophila induces IFNbeta in lung epithelial cells via IPS-1 and IRF3, which also control bacterial replication. J Biol Chem 281:36173–9

    Article  PubMed  CAS  Google Scholar 

  • Orrison LH, Cherry WB, Fliermans CB, Dees SB, McDougal LK, Dodd DJ (1981) Characteristics of environmental isolates of Legionella pneumophila. Appl Environ Microbiol 42:109–115

    PubMed  CAS  Google Scholar 

  • Orrison LH, Cherry WB, Tyndall RL, Fliermans CB, Gough SB, Lambert MA, McDougal LK, Bibb WF, Brenner DJ (1983) Legionella oakridgensis: unusual new species isolated from cooling tower water. Appl Environ Microbiol 45:536–545

    PubMed  CAS  Google Scholar 

  • Ortiz-Roque CM, Hazen TC (1987) Abundance and distribution of Legionellaceae in Puerto Rican waters. Appl Environ Microbiol 53:2231–2236

    PubMed  CAS  Google Scholar 

  • Ott M (1994) Genetic approaches to study Legionella pneumophila pathogenicity. FEMS Microbiol Rev 14:161–176

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Messner P, Heesemann J, Marre R, Hacker J (1991) Temperature-dependent expression of flagella in Legionella. J Gen Microbiol 137:1955–1961

    PubMed  CAS  Google Scholar 

  • Otten S, Iyer S, Johnson W, Montgomery R (1986) Serospecific antigens of Legionella pneumophila. J Bacteriol 167:893–904

    PubMed  CAS  Google Scholar 

  • Otto GP, Wu MY, Clarke M, Lu H, Anderson OR, Hilbi H, Shuman HA, Kessin RH (2004) Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol 51:63–72

    Article  PubMed  CAS  Google Scholar 

  • Pagnier I, Merchat M, La Scola B (2009) Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control. Future Microbiol 4:615–629

    Article  PubMed  CAS  Google Scholar 

  • Palmer CJ, Tsai YL, Paszko-Kolva C, Mayer C, Sangermano LR (1993) Detection of Legionella species in sewage and ocean water by polymerase chain reaction, direct fluorescent-antibody, and plate culture methods. Appl Environ Microbiol 59:3618–3624

    PubMed  CAS  Google Scholar 

  • Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654

    Article  PubMed  CAS  Google Scholar 

  • Pang CM, Liu WT (2006) Biological filtration limits carbon availability and affects downstream biofilm formation and community structure. Appl Environ Microbiol 72:5702–5712

    Article  PubMed  CAS  Google Scholar 

  • Park DR, Skerrett SJ (1996) IL-10 enhances the growth of Legionella pneumophila in human mononuclear phagocytes and reverses the protective effect of IFN-g. J Immunol 157:2528–2538

    PubMed  CAS  Google Scholar 

  • Park MY, Ko KS, Lee HK, Park MS, Kook YH (2003) Legionella busanensis sp. nov., isolated from cooling tower water in Korea. Int J Syst Evol Microbiol 53:77–80

    Article  PubMed  CAS  Google Scholar 

  • Parthuisot N, West NJ, Lebaron P, Baudart J (2010) High diversity and abundance of Legionella spp. in a pristine river and impact of seasonal and anthropogenic effects. Appl Environ Microbiol 76:8201–8210

    Article  PubMed  CAS  Google Scholar 

  • Pasculle AW, Feeley JC, Gibson RJ, Cordes LG, Myerowitz RL, Patton CM, Gorman GW, Carmack CL, Ezzell JW, Dowling JN (1980) Pittsburgh pneumonia agent: direct isolation from human lung tissue. J Infect Dis 141:727–732

    Article  PubMed  CAS  Google Scholar 

  • Paszko-Kolva C, Shahamat M, Colwell RR (1993) Effect of temperature on survival of Legionella pneumophila in the aquatic environment. Microb Releases 2:73–79

    PubMed  CAS  Google Scholar 

  • Paszko-Kolva C, Shahamat M, Colwell RR (1992) Long-term survival of Legionella pneumophila serogroup 1 under low-nutrient conditions and associated morphological changes. FEMS Microbiol Ecol 102:45–55

    Article  Google Scholar 

  • Paszko-Kolva C, Yamamoto H, Shahamat M, Sawyer TK, Morris G, Colwell RR (1991) Isolation of amoebae and Pseudomonas and Legionella spp. from eyewash stations. Appl Environ Microbiol 57:163–167

    PubMed  CAS  Google Scholar 

  • Patterson WJ, Hay J, Seal DV, McLuckie JC (1997) Colonization of transplant unit water supplies with Legionella and protozoa: precautions required to reduce the risk of legionellosis. J Hosp Infect 37:7–17

    Article  PubMed  CAS  Google Scholar 

  • Payne NR, Horwitz MA (1987) Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med 166:1377–89

    Article  PubMed  CAS  Google Scholar 

  • Pearce MM, Cianciotto NP (2009) Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol Lett 300:256–264

    Article  PubMed  CAS  Google Scholar 

  • Pearce MM, Cianciotto NP (2012) Epub ahead of print doi:10.1099/ijs.0.039248-0

    Google Scholar 

  • Pearce MM, Theodoropoulos N, Mandel MJ, Brown E, Reed KD, Cianciotto NP (2012) Legionella cardiaca sp. nov., isolated from a case of native valve endocarditis in a human heart. Int J Syst Evol Microbiol

    Google Scholar 

  • Pearce MM, Theodoropoulos N, Noskin GA, Flaherty JP, Stemper ME, Aspeslet T, Cianciotto NP, Reed KD (2011) Native valve endocarditis due to a novel strain of Legionella. J Clin Microbiol 49:3340–3342

    Article  PubMed  Google Scholar 

  • Pearlman E, Jiwa AH, Engleberg NC, Eisenstein BI (1988) Growth of Legionella pneumophila in a human macrophage-like (U937) cell line. Microb Pathogen 5:87–95

    Article  CAS  Google Scholar 

  • Pecastaings S, Berge M, Dubourg KM, Roques C (2010) Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms. Biofouling 26:809–819

    Article  PubMed  CAS  Google Scholar 

  • Pedersen LL, Radulic M, Doric M, Abu Kwaik Y (2001) HtrA homologue of Legionella pneumophila: an indispensable element for intracellular infection of mammalian but not protozoan cells. Infect Immun 69:2569–2579

    Article  PubMed  CAS  Google Scholar 

  • Piao Z, Sze CC, Barysheva O, Iida K, Yoshida S (2006) Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 72:1613–1622

    Article  PubMed  CAS  Google Scholar 

  • Pine L, George JR, Reeves MW, Harrell WK (1979) Development of a chemically defined liquid medium for growth of Legionella pneumophila. J Clin Microbiol 9:615–626

    PubMed  CAS  Google Scholar 

  • Piso RJ, Caruso A, Nebiker M (2007) Hose as a source of Legionella pneumonia. A new risk factor for gardeners? J Hosp Infect 67:396–397

    Article  PubMed  CAS  Google Scholar 

  • Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms–biotechnological and medical aspects. Acta Biochim Pol 53:429–443

    PubMed  CAS  Google Scholar 

  • Plouffe JF, File TM, Jr, Breiman RF, Hackman BA, Salstrom SJ, Marston BJ, Fields BS (1995) Reevaluation of the definition of Legionnaires’ disease: use of the urinary antigen assay. Community Based Pneumonia Incidence Study Group. Clin Infect Dis 20:1286–91

    Article  PubMed  CAS  Google Scholar 

  • Plouffe JF, Para MF, Fuller KA (1985) Serum bactericidal activity against Legionella pneumophila. J Clin Microbiol 22:863–864

    PubMed  CAS  Google Scholar 

  • Plumlee CR, Lee C, Beg AA, Decker T, Shuman HA, Schindler C (2009) Interferons direct an effective innate response to Legionella pneumophila infection. J Biol Chem 284:30058–66

    Article  PubMed  CAS  Google Scholar 

  • Poch MT, Johnson W (1993) Ferric reductases of Legionella pneumophila. Biometals 6:107–114

    Article  PubMed  CAS  Google Scholar 

  • Polesky AH, Ross JT, Falkow S, Tompkins LS (2001) Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect Immun 69:977–987

    Article  PubMed  CAS  Google Scholar 

  • Pope CD, O'Connell W, Cianciotto NP (1996) Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection. Infect Immun 64:629–636

    PubMed  CAS  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp still magical? Annu Rev Microbiol 62:35–51

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F, Kalia A, Kwaik YA (2009) Molecular Mimicry by an F-Box effector of Legionella pneumophila Hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 5:e1000704

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Kwaik YA (2010) Exploitation of host polyubiquitination machinery through molecular mimicry by eukaryotic-like bacterial F-Box effectors. Front Microbiol 1:122

    PubMed  CAS  Google Scholar 

  • Price CT, Al-Khodor S, Al-Quadan T, Abu Kwaik Y (2010a) Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78:2079–88

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y (2010b) Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med 207:1713–26

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Jones SC, Amundson KE, Kwaik YA (2010c) Host-mediated post-translational prenylation of novel dot/icm-translocated effectors of Legionella pneumophila. Front Microbiol 1:131

    PubMed  CAS  Google Scholar 

  • Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334(6062):1553–1557

    Google Scholar 

  • Pruckler JM, Benson RF, Moyenuddin M, Martin WT, Fields BS (1995) Association of flagellum expression and intracellular growth of Legionella pneumophila. Infect Immun 63:4928–4932

    PubMed  CAS  Google Scholar 

  • Purcell M, Shuman HA (1998) The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages. Infect Immun 66:2245–55

    PubMed  CAS  Google Scholar 

  • Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–33

    Article  PubMed  CAS  Google Scholar 

  • Ragull S, Garcia-Nunez M, Pedro-Botet ML, Sopena N, Esteve M, Montenegro R, Sabria M (2007) Legionella pneumophila in cooling towers: fluctuations in counts, determination of genetic variability by pulsed-field gel electrophoresis (PFGE), and persistence of PFGE patterns. Appl Environ Microbiol 73:5382–5384

    Article  PubMed  CAS  Google Scholar 

  • Ramirez JA, Ahkee S, Tolentino A, Miller RD, Summersgill JT (1996) Diagnosis of Legionella pneumophila, Mycoplasma pneumoniae, or Chlamydia pneumoniae lower respiratory infection using the polymerase chain reaction on a single throat swab specimen. Diagn Microbiol Infect Dis 24:7–14

    Article  PubMed  CAS  Google Scholar 

  • Rankin S, Li Z, Isberg RR (2002) Macrophage-induced genes of Legionella pneumophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect Immun 70:3637–3648

    Article  PubMed  CAS  Google Scholar 

  • Rantakokko-Jalava K, Jalava J (2001) Development of conventional and real-time PCR assays for detection of Legionella DNA in respiratory specimens. J Clin Microbiol 39:2904–2910

    Article  PubMed  CAS  Google Scholar 

  • Rasis M, Segal G (2009) The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72:995–1010

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff RM, Lanser JA, Manning PA, Heuzenroeder MW (1998) Sequence-based classification scheme for the genus Legionella targeting the mip gene. J Clin Microbiol 36:1560–1567

    PubMed  CAS  Google Scholar 

  • Rechnitzer C, Blom J (1989) Engulfment of the Philadelphia strain of Legionella pneumophila within pseudopod coils in human phagocytes. Comparison with other Legionella strains and species. APMIS 97:105–114

    Article  PubMed  CAS  Google Scholar 

  • Reichardt K, Jacobs E, Roske I, Helbig JH (2010) Legionella pneumophila carrying the virulence-associated lipopolysaccharide epitope possesses two functionally different LPS components. Microbiology 156:2953–2961

    Article  PubMed  CAS  Google Scholar 

  • Reischl U, Linde HJ, Lehn N, Landt O, Barratt K, Wellinghausen N (2002) Direct detection and differentiation of Legionella spp. and Legionella pneumophila in clinical specimens by dual-color real-time PCR and melting curve analysis. J Clin Microbiol 40:3814–3817

    Article  PubMed  CAS  Google Scholar 

  • Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18

    Article  PubMed  CAS  Google Scholar 

  • Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW (1994) Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun 62:5689–5693

    PubMed  CAS  Google Scholar 

  • Retzlaff C, Yamamoto Y, Okubo S, Hoffman PS, Friedman H, Klein TW (1996) Legionella pneumophila heat-shock protein-induced increase of interleukin-1 beta mRNA involves protein kinase C signalling in macrophages. Immunology 89:281–288

    Article  PubMed  CAS  Google Scholar 

  • Ribet D, Cossart P (2011) Pathogen-mediated posttranslational modifications: a re-emerging field. Cell 143:694–702

    Article  CAS  Google Scholar 

  • Riboldi-Tunnicliffe A, Konig B, Jessen S, Weiss MS, Rahfeld J, Hacker J, Fischer G, Hilgenfeld R (2001) Crystal structure of Mip, a prolylisomerase from Legionella pneumophila. Nat Struct Biol 8:779–783

    Article  PubMed  CAS  Google Scholar 

  • Ricci ML, Fontana S, Bella A, Gaggioli A, Cascella R, Cassone A, Scaturro M (2010) A preliminary assessment of the occupational risk of acquiring Legionnaire’' disease for people working in telephone manholes, a new workplace environment for Legionella growth. Am J Infect Control 38:540–545

    Article  PubMed  Google Scholar 

  • Ricketts K, Joseph CA, Yadav R (2010) Travel-associated Legionnaires disease in Europe in 2008. Euro Surveill 15:19578

    PubMed  CAS  Google Scholar 

  • Ricketts KD, Joseph CA (2007) Legionnaires disease in Europe: 2005-2006. Euro Surveill 12:E7–8

    PubMed  CAS  Google Scholar 

  • Ricketts KD, Joseph CA (2005) Legionnaires’ disease in Europe 2003-2004. Euro Surveill 10:256–259

    PubMed  CAS  Google Scholar 

  • Ricketts KD, Joseph CA, Lee JV, Wilkinson P (2011) Wet cooling systems as a source of sporadic Legionnaires' disease: a geographical analysis of data for England and Wales, 1996–2006. J Epidemiol Commun Health. doi: 10.1136/jech.2010.117952

    Google Scholar 

  • Ridenour DA, Cirillo SL, Feng S, Samrakandi MM, Cirillo JD (2003) Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature-dependent fashion. Infect Immun 71:6256–63

    Article  PubMed  CAS  Google Scholar 

  • Riffard S, Douglass S, Brooks T, Springthorpe S, Filion LG, Sattar SA (2001) Occurrence of Legionella in groundwater: an ecological study. Water Sci Technol 43:99–102

    PubMed  CAS  Google Scholar 

  • Riffard S, Vandenesch F, Reyrolle M, Etienne J (1996) Distribution of mip-related sequences in 39 species (48 serogroups) of Legionellaceae. Epidemiol Infect 117:501–506

    Article  PubMed  CAS  Google Scholar 

  • Rigden DJ (2011) Identification and modelling of a PPM protein phosphatase fold in the Legionella pneumophila deAMPylase SidD. FEBS Lett 585:2749–2754

    Article  PubMed  CAS  Google Scholar 

  • Ristroph JD, Hedlund KW, Gowda S (1981) Chemically defined medium for Legionella pneumophila growth. J Clin Microbiol 13:115–119

    PubMed  CAS  Google Scholar 

  • Robey M, Cianciotto NP (2002) Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 70:5659–5669

    Article  PubMed  CAS  Google Scholar 

  • Robey M, O'Connell W, Cianciotto NP (2001) Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect Immun 69:4276–4286

    Article  PubMed  CAS  Google Scholar 

  • Robinson CG, Roy CR (2006) Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol 8:793–805

    Article  PubMed  CAS  Google Scholar 

  • Rodgers FG (1979) Ultrastructure of Legionella pneumophila. J Clin Pathol 32:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Rodgers FG, Greaves PW, Macrae AD (1979) Flagella and fimbriae on Legionella organisms. Lancet 2:753–754

    Article  PubMed  CAS  Google Scholar 

  • Rodgers FG, Greaves PW, Macrae AD, Lewis MJ (1980) Electron microscopic evidence of flagella and pili on Legionella pneumophila. J Clin Pathol 33:1184–1188

    Article  PubMed  CAS  Google Scholar 

  • Rodgers FG, Macrae AD, Lewis MJ (1978) Electron microscopy of the organism of Legionnaires’ disease. Nature 272:825–826

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60:1585–1592

    PubMed  CAS  Google Scholar 

  • Rogers J, Keevil CW (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58:2326–2330

    PubMed  CAS  Google Scholar 

  • Rogers JE, Eisenstein BI, Engleberg NC (1992) Spontaneous changes in lipopolysaccharide and monoclonal antibody binding in a single line of Legionella pneumophila serogroup 1 cells. In: Barbaree JM, Breiman RF, Dufour AP (ed) Legionella: current status and emerging perspectives. ASM Press, Washington, DC, pp 73–74

    Google Scholar 

  • Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C (2007) Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1:77–83

    Article  PubMed  CAS  Google Scholar 

  • Roig J, Aguilar X, Ruiz J, Domingo C, Mesalles E, Manterola J, Morera J (1991) Comparative study of Legionella pneumophila and other nosocomial-acquired pneumonias. Chest 99:344–350

    Article  PubMed  CAS  Google Scholar 

  • Rolando M, Buchrieser C (2012) Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol 7:369–381

    Article  PubMed  CAS  Google Scholar 

  • Rossier O, Cianciotto NP (2005) The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun 73:2020–2032

    Article  PubMed  CAS  Google Scholar 

  • Rossier O, Cianciotto NP (2001) Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 69:2092–2098

    Article  PubMed  CAS  Google Scholar 

  • Rossier O, Dao J, Cianciotto NP (2008) The type II secretion system of Legionella pneumophila elaborates two aminopeptidases as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl Environ Microbiol 74:753–761

    Article  PubMed  CAS  Google Scholar 

  • Rossier O, Dao J, Cianciotto NP (2009) A type II-secreted ribonuclease of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. Microbiology 155:882–890

    Article  PubMed  CAS  Google Scholar 

  • Rossier O, Starkenburg S, Cianciotto NP (2004) Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 72:310–321

    Article  PubMed  CAS  Google Scholar 

  • Rowbotham TJ (1986) Current views on the relationships between amoebae, legionellae and man. Isr J Med Sci 22:678–689

    PubMed  CAS  Google Scholar 

  • Rowbotham TJ (1983) Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J Clin Pathol 36:978–986

    Article  PubMed  CAS  Google Scholar 

  • Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Roy CR (1999) Trafficking of the Legionella pneumophila phagosome. ASM News 65

    Google Scholar 

  • Roy CR, Mukherjee S (2009) Bacterial FIC Proteins AMP Up Infection. Sci Signal 2:pe14

    Google Scholar 

  • Rubin CJ, Thollesson M, Kirsebom LA, Herrmann B (2005) Phylogenetic relationships and species differentiation of 39 Legionella species by sequence determination of the RNase P RNA gene rnpB. Int J Syst Evol Microbiol 55:2039–2049

    Article  PubMed  CAS  Google Scholar 

  • Ruf B, Schürmann D, Horbach I, Fehrenbach FJ, Pohle HD (1990) Prevalence and diagnosis of Legionella pneumonia: a 3-year prospective study with emphasis on application of urinary antigen detection. J Infect Dis 162:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Ruiz M, Ewig S, Marcos MA, Martinez JA, Arancibia F, Mensa J, Torres A (1999) Etiology of community-acquired pneumonia: impact of age, comorbidity, and severity. Am J Respir Crit Care Med 160:397–405

    PubMed  CAS  Google Scholar 

  • Rytkonen A, Holden DW (2007) Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe 1:13–22

    Article  PubMed  CAS  Google Scholar 

  • Sabria M, Alvarez J, Dominguez A, Pedrol A, Sauca G, Salleras L, Lopez A, Garcia-Nunez MA, Parron I, Barrufet MP (2006) A community outbreak of Legionnaires’ disease: evidence of a cooling tower as the source. Clin Microbiol Infect 12:642–647

    Article  PubMed  CAS  Google Scholar 

  • Sadosky AB, Wiater LA, Shuman HA (1993) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61:5361–73

    PubMed  CAS  Google Scholar 

  • Sadosky AB, Wilson JW, Steinman HM, Shuman HA (1994) The iron superoxide dismutase of Legionella pneumophila is essential for viability. J Bacteriol 176:3790–3799

    PubMed  CAS  Google Scholar 

  • Sahr T, Bruggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C (2009) Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 72:741–762

    Article  PubMed  CAS  Google Scholar 

  • Sahr T, Rusniok C, Dervins-Ravault D, Sismeiro O, Coppee JY, Buchrieser C (2012) Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence. RNA Biol 9(4):503–519

    Google Scholar 

  • Sakamoto R, Ohno A, Nakahara T, Satomura K, Iwanaga S, Kouyama Y, Kura F, Noami M, Kusaka K, Funato T, Takeda M, Matsubayashi K, Okumiya K, Kato N, Yamaguchi K (2009) Is driving a car a risk for Legionnaires’ disease? Epidemiol Infect 137:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Sampson JS, O'Connor SP, Holloway BP, Plikaytis BB, Carlone GM, Mayer LW (1990) Nucleotide sequence of htpB, the Legionella pneumophila gene encoding the 58-kilodalton (kDa) common antigen, formerly designated the 60-kDa common antigen. Infect Immun 58:3154–3157

    PubMed  CAS  Google Scholar 

  • Sansom FM, Newton HJ, Crikis S, Cianciotto NP, Cowan PJ, D’ Apice AJ, Hartland EL (2007) A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila. Cell Microbiol 9:1922–1935

    Article  PubMed  CAS  Google Scholar 

  • Sansom FM, Robson SC, Hartland EL (2008) Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol Mol Biol Rev 72:765–781

    Article  PubMed  CAS  Google Scholar 

  • Santic M, Asare R, Doric M, Abu Kwaik Y (2007) Host-dependent trigger of caspases and apoptosis by Legionella pneumophila. Infect Immun 75:2903–2913

    Article  PubMed  CAS  Google Scholar 

  • Sargent F, Berks BC, Palmer T (2006) Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiol Lett 254:198–207

    Article  PubMed  CAS  Google Scholar 

  • Sauer JD, Bachman MA, Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci USA 102:9924–9

    Article  PubMed  CAS  Google Scholar 

  • Sawada K, Ariki S, Kojima T, Saito A, Yamazoe M, Nishitani C, Shimizu T, Takahashi M, Mitsuzawa H, Yokota S, Sawada N, Fujii N, Takahashi H, Kuroki Y (2010) Pulmonary collectins protect macrophages against pore-forming activity of Legionella pneumophila and suppress its intracellular growth. J Biol Chem 285:8434–8443

    Article  PubMed  CAS  Google Scholar 

  • Schiavoni G, Mauri C, Carlei D, Belardelli F, Pastoris MC, Proietti E (2004) Type I IFN protects permissive macrophages from Legionella pneumophila infection through an IFN-gamma-independent pathway. J Immunol 173:1266–75

    PubMed  CAS  Google Scholar 

  • Schmidt B, Rahfeld J, Schierhorn A, Ludwig B, Hacker J, Fischer G (1994) A homodimer represents an active species of the peptidyl-prolyl cis/trans isomerase FKBP25mem from Legionella pneumophila. FEBS Lett 352:185–190

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, Horn M (2010) The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol 192:1045–57

    Article  PubMed  CAS  Google Scholar 

  • Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell 36:1060–1072

    Article  PubMed  CAS  Google Scholar 

  • Schoenen D, Schulze-Robbecke R, Schirdewahn N (1988) Microbial contamination of water by pipe and tubing material. 2. Growth of Legionella pneumophila. Zentralbl Bakteriol Mikrobiol Und Hyg B 186:326–332

    CAS  Google Scholar 

  • Schofield GM, Locci R (1985) Colonization of components of a model hot water system by Legionella pneumophila. J Appl Bacteriol 58:151–162

    Article  PubMed  CAS  Google Scholar 

  • Schofield GM, Wright AE (1984) Survival of Legionella pneumophila in a model hot water distribution system. J Gen Microbiol 130:1751–1756

    PubMed  CAS  Google Scholar 

  • Schramek S, Kazar J, Bazovska S (1982) Lipid A in Legionella pneumophila. Zbl Bakt Hyg I Abt Orig A 252:401–404

    CAS  Google Scholar 

  • Schroeder GN, Petty NK, Mousnier A, Harding CR, Vogrin AJ, Wee B, Fry NK, Harrison TG, Newton HJ, Thomson NR, Beatson SA, Dougan G, Hartland E, Frankel G (2010) The genome of Legionella pneumophila strain 130b contains a unique combination of type IV secretion systems and encodes novel Dot/Icm secretion system effector proteins. J Bacteriol 192:6001–6016

    Article  PubMed  CAS  Google Scholar 

  • Schuetz AN, Hughes RL, Howard RM, Williams TC, Nolte FS, Jackson D, Ribner BS (2009) Pseudo-outbreak of Legionella pneumophila serogroup 8 infection associated with a contaminated ice machine in a bronchoscopy suite. Infect Control Hosp Epidemiol 30:461–466

    Article  PubMed  CAS  Google Scholar 

  • Schunder E, Adam P, Higa F, Remer KA, Lorenz U, Bender J, Schulz T, Flieger A, Steinert M, Heuner K (2010) Phospholipase PlaB is a new virulence factor of Legionella pneumophila. Int J Med Microbiol 300:313–323

    Article  PubMed  CAS  Google Scholar 

  • Seeger EM, Thuma M, Fernandez-Moreira E, Jacobs E, Schmitz M, Helbig JH (2010) Lipopolysaccharide of Legionella pneumophila shed in a liquid culture as a nonvesicular fraction arrests phagosome maturation in amoeba and monocytic host cells. FEMS Microbiol Lett 307:113–119

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Feldman M, Zusman T (2005) The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev 29:65–81

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci USA 95:1669–74

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Shuman HA (1997) Characterization of a new region required for macrophage killing by Legionella pneumophila. Infect Immun 65:5057–66

    PubMed  CAS  Google Scholar 

  • Segal G, Shuman HA (1998) Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30:197–208

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Shuman HA (1999) Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 67:2117–2124

    PubMed  CAS  Google Scholar 

  • Sekla LH, Buchanan AG, Parker SE (1982) Legionella pneumophila pneumonia. Can Med Assoc J 126:116–118

    PubMed  CAS  Google Scholar 

  • Sepulveda JL, Wu C (2006) The parvins. Cell Mol Life Sci 63:25–35

    Article  PubMed  CAS  Google Scholar 

  • Serota AI, Meyer RD, Wilson SE, Edelstein PH, Finegold SM (1981) Legionnaires’ disease in the postoperative patient. J Surg Res 30:417–427

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin H, Davidsen TM, Beanan MJ, Deboy RT, Daugherty SC, Brinkac LM, Madupu R, Dodson RJ, Khouri HM, Lee KH, Carty HA, Scanlan D, Heinzen RA, Thompson HA, Samuel JE, Fraser CM, Heidelberg JF (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci USA 100:5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Sexton JA, Vogel JP (2004) Regulation of hypercompetence in Legionella pneumophila. J Bacteriol 186:3814–3825

    Article  PubMed  CAS  Google Scholar 

  • Shadrach WS, Rydzewski K, Laube U, Holland G, Ozel M, Kiderlen AF, Flieger A (2005) Balamuthia mandrillaris, free-living ameba and opportunistic agent of encephalitis, is a potential host for Legionella pneumophila bacteria. Appl Environ Microbiol 71:2244–2249

    Article  PubMed  CAS  Google Scholar 

  • Sheehan KB, Henson JM, Ferris MJ (2005) Legionella species diversity in an acidic biofilm community in Yellowstone National Park. Appl Environ Microbiol 71:507–511

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Banga S, Liu Y, Xu L, Gao P, Shamovsky I, Nudler E, Luo ZQ (2009) Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol 11:911–926

    Article  PubMed  CAS  Google Scholar 

  • Shevchuk O, Batzilla C, Hagele S, Kusch H, Engelmann S, Hecker M, Haas A, Heuner K, Glockner G, Steinert M (2009) Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299:489–508

    Article  PubMed  CAS  Google Scholar 

  • Shim HK, Kim JY, Kim MJ, Sim HS, Park DW, Sohn JW, Kim MJ (2009) Legionella lipoprotein activates toll-like receptor 2 and induces cytokine production and expression of costimulatory molecules in peritoneal macrophages. Exp Mol Med 41:687–694

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Case CL, Archer KA, Nogueira CV, Kobayashi KS, Flavell RA, Roy CR, Zamboni DS (2008) Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog 4:e1000220

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Roy CR (2008) Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Shohdy N, Efe JA, Emr SD, Shuman HA (2005) Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci USA 102:4866–4871

    Article  PubMed  CAS  Google Scholar 

  • Shuman HA, Purcell M, Segal G, Hales L, Wiater LA (1998) Intracellular multiplication of Legionella pneumophila: human pathogen or accidental tourist? Curr Top Microbiol Immunol 225:99–112

    Article  PubMed  CAS  Google Scholar 

  • Silveira TN, Zamboni DS (2010) Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun 78:1403–13

    Article  PubMed  CAS  Google Scholar 

  • Singh T, Coogan MM (2005) Isolation of pathogenic Legionella species and Legionella-laden amoebae in dental unit waterlines. J Hosp Infect 61:257–262

    Article  PubMed  CAS  Google Scholar 

  • Skerrett SJ, Martin TR (1994) Intratracheal interferon-gamma augments pulmonary defenses in experimental legionellosis. Am J Respir Crit Care Med 149:50–58

    PubMed  CAS  Google Scholar 

  • Skerrett SJ, Schmidt RA, Martin TR (1989) Impaired clearance of aerosolized Legionella pneumophila in corticosteroid-treated rats: a model of Legionnaires' disease in the compromised host. J Infect Dis 160:261–273

    Article  PubMed  CAS  Google Scholar 

  • Söderberg MA, Cianciotto NP (2008) A Legionella pneumophila peptidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures. Appl Environ Microbiol 74:1634–1638

    Article  PubMed  CAS  Google Scholar 

  • Söderberg MA, Cianciotto NP (2010) Mediators of lipid A modification, RNA degradation, and central intermediary metabolism facilitate the growth of Legionella pneumophila at low temperatures. Curr Microbiol 60:59–65

    Article  PubMed  CAS  Google Scholar 

  • Söderberg MA, Dao J, Starkenburg S, Cianciotto NP (2008) Importance of type II secretion for Legionella pneumophila survival in tap water and amoebae at low temperature. Appl Environ Microbiol 74:5583–5588

    Article  PubMed  CAS  Google Scholar 

  • Söderberg MA, Rossier O, Cianciotto NP (2004) The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol 186:3712–3720

    Article  PubMed  CAS  Google Scholar 

  • Solomon JM, Rupper A, Cardelli JA, Isberg RR (2000) Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68:2939–2947

    Article  PubMed  CAS  Google Scholar 

  • Sopena N, Sabrià M, Pedro-Botet ML, Reynaga E, García-Núñez M, Domínguez J, Matas L (2002) Factors related to persistence of Legionella urinary antigen excretion in patients with legionnaires' disease. Eur J Clin Microbiol Infect Dis 21:845–848

    PubMed  CAS  Google Scholar 

  • Sopena N, Sabria-Leal M, Pedro-Botet ML, Padilla E, Dominguez J, Morera J, Tudela P (1998) Comparative study of the clinical presentation of Legionella pneumonia and other community-acquired pneumonias. Chest 113:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Spirig T, Tiaden A, Kiefer P, Buchrieser C, Vorholt JA, Hilbi H (2008) The Legionella autoinducer synthase LqsA produces an alpha-hydroxyketone signaling molecule. J Biol Chem 283:18113–18123

    Article  PubMed  CAS  Google Scholar 

  • Spörri R, Joller N, Albers U, Hilbi H, Oxenius A (2006) MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. J Immunol 176:6162–71

    PubMed  Google Scholar 

  • Spörri R, Joller N, Hilbi H, Oxenius A (2008) A novel role for neutrophils as critical activators of NK cells. J Immunol 181:7121–30

    PubMed  Google Scholar 

  • Sprang SR (1997) G protein mechanisms: insights from structural analysis. Annu Rev Biochem 66:639–678

    Article  PubMed  CAS  Google Scholar 

  • St. John G, Steinman HM (1996) Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J Bacteriol 178:1578–1584

    Google Scholar 

  • Starkenburg SR, Casey JM, Cianciotto NP (2004) Siderophore activity among members of the Legionella genus. Curr Microbiol 49:203–207

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Galan JE (2001) Structural mimicry in bacterial virulence. Nature 412:701–705

    Article  PubMed  CAS  Google Scholar 

  • Steele TW, McLennan AM (1996) Infection of Tetrahymena pyriformis by Legionella longbeachae and other Legionella species found in potting mixes. Appl Environ Microbiol 62:1081–1083

    PubMed  CAS  Google Scholar 

  • Steinert M, Emody L, Amann R, Hacker J (1997) Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl Environ Microbiol 63:2047–53

    PubMed  CAS  Google Scholar 

  • Steinert M, Engelhard H, Flugel M, Wintermeyer E, Hacker J (1995) The Lly protein protects Legionella pneumophila from light but does not directly influence its intracellular survival in Hartmannella vermiformis. Appl Environ Microbiol 61:2428–2430

    PubMed  CAS  Google Scholar 

  • Steinert M, Flugel M, Schuppler M, Helbig JH, Supriyono A, Proksch P, Luck PC (2001) The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. FEMS Microbiol Lett 203:41–47

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Heuner K, Buchrieser C, Albert-Weissenberger C, Glockner G (2007) Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297:577–87

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Ockert G, Luck C, Hacker J (1998) Regrowth of Legionella pneumophila in a heat-disinfected plumbing system. Zentralbl Bakteriol 288:331–342

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Ott M, Christian Luck P, Tannich E, Hacker J (1994) Studies on the uptake and intracellular replication of Legionella pneumophila in protozoa and in macrophage-like cells. FEMS Microbiol Ecol 15:299–308

    Article  CAS  Google Scholar 

  • Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103

    Article  PubMed  CAS  Google Scholar 

  • Stewart CR, Burnside DM, Cianciotto NP (2011) The surfactant of Legionella pneumophila is secreted in a TolC-dependent manner and is antagonistic toward other Legionella species. J Bacteriol 193:5971–5984

    Article  PubMed  CAS  Google Scholar 

  • Stewart CR, Rossier O, Cianciotto NP (2009) Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol 191:1537–1546

    Article  PubMed  CAS  Google Scholar 

  • Stone BJ, Abu Kwaik Y (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 66:1768–1775

    PubMed  CAS  Google Scholar 

  • Stone BJ, Brier A, Abu Kwaik Y (1999) The Legionella pneumophila prp locus; required during infection of macrophages and amoebae. Microb Pathogen 27:369–376

    Article  CAS  Google Scholar 

  • Stone BJ, Kwaik YA (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181:1395–402

    PubMed  CAS  Google Scholar 

  • Storey MV, Langmark J, Ashbolt NJ, Stenstrom TA (2004) The fate of legionellae within distribution pipe biofilms: measurement of their persistence, inactivation and detachment. Water Sci Technol 49:269–275

    PubMed  CAS  Google Scholar 

  • Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891

    Article  PubMed  CAS  Google Scholar 

  • Stout JE, Yu VL (1997) Legionellosis. N Engl J Med 337:682–687

    Article  PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  • Straus WL, Plouffe JF, File TM, Jr, Lipman HB, Hackman BH, Salstrom SJ, Benson RF, Breiman RF (1996) Risk factors for domestic acquisition of Legionnaires disease. Arch Intern Med 156:1685–1692

    Article  PubMed  CAS  Google Scholar 

  • Sturgill-Koszycki S, Swanson MS (2000) Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J Exp Med 192:1261–72

    Article  PubMed  CAS  Google Scholar 

  • Suh HY, Lee DW, Lee KH, Ku B, Choi SJ, Woo JS, Kim YG, Oh BH (2010) Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J 29:496–504

    Article  PubMed  CAS  Google Scholar 

  • Surgot M, Barioz CM, Nowicki M, Bornstein N, Fleurette J (1988) An electron microscopy study of Legionella pneumophila after in vitro and in vivo culture. Zbl Bakteriol 269:26–33

    CAS  Google Scholar 

  • Susa M, Hacker J, Marre R (1996) De novo synthesis of Legionella pneumophila antigens during intracellular growth in phagocytic cells. Infect Immun 64:1679–1684

    PubMed  CAS  Google Scholar 

  • Susa M, Ticac B, Rukavina T, Doric M, Marre R (1998) Legionella pneumophila infection in intratracheally inoculated T cell-depleted or -nondepleted A/J mice. J Immunol 160:316–321

    PubMed  CAS  Google Scholar 

  • Suter TM, Viswanathan VK, Cianciotto NP (1997) Isolation of a gene encoding a novel spectinomycin phosphotransferase from Legionella pneumophila. Antimicrob Agts Chemother 41:1385–1388

    CAS  Google Scholar 

  • Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T (2002) Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140

    Article  PubMed  CAS  Google Scholar 

  • Svarrer CW, Lück C, Elverdal PL, Uldum SA (2012) Immunochromatic kits Xpect Legionella and BinaxNOW Legionella for detection of Legionella pneumophila urinary antigen have low sensitivities for the diagnosis of Legionnaires’ disease. J Med Microbiol 61:213–217

    Article  PubMed  Google Scholar 

  • Svarrer CW, Uldum SA (2011) The occurrence of Legionella species other than Legionella pneumophila in clinical and environmental samples in Denmark identified by mip gene sequencing and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. doi: 10.1111/j.1469-0691.2011.03698.x.

    Google Scholar 

  • Swanson MS, Hammer BK (2000) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54:567–613

    Article  PubMed  CAS  Google Scholar 

  • Swanson MS, Isberg RR (1995) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63:3609–3620

    PubMed  CAS  Google Scholar 

  • Swanson MS, Molofsky AB (2005) Autophagy and inflammatory cell death, partners of innate immunity. Autophagy 1:174–176

    Article  PubMed  CAS  Google Scholar 

  • Takekawa Y, Saito M, Wang C, Qin T, Ogawa M, Kanemaru T, Yoshida SI (2012) Characteristic morphology of intracellular microcolonies of Legionella oakridgensis OR-10. Can J Microbiol. doi:10.1139/w11-126

    Google Scholar 

  • Tan MJ, Tan JS, Hamor RH, File TM, Jr, Breiman RF (2000) The radiologic manifestations of Legionnaire’s disease. The Ohio Community-Based Pneumonia Incidence Study Group. Chest 117:398–403

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Luo ZQ (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509

    Article  PubMed  CAS  Google Scholar 

  • Tang P, Krishnan C (1993) Legionellosis in Ontario, Canada: laboratory aspects. In: Barbaree JM, Breiman RF, Dufour AP (ed) Legionella: current status and emerging perspectives. ASM Press, Washington, DC, pp 16–17

    Google Scholar 

  • Tateda K, Moore TA, Deng JC, Newstead MW, Zeng X, Matsukawa A, Swanson MS, Yamaguchi K, Standiford TJ (2001a) Early recruitment of neutrophils determines subsequent T1/T2 host responses in a murine model of Legionella pneumophila pneumonia. J Immunol 166:3355–61

    PubMed  CAS  Google Scholar 

  • Tateda K, Moore TA, Newstead MW, Tsai WC, Zeng X, Deng JC, Chen G, Reddy R, Yamaguchi K, Standiford TJ (2001b) Chemokine-dependent neutrophil recruitment in a murine model of Legionella pneumonia: potential role of neutrophils as immunoregulatory cells. Infect Immun 69:2017–24

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Ross K, Bentham R (2009) Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol 58:538–547

    Article  PubMed  Google Scholar 

  • Telford D, Partridge S, Cumming I, Smith A, Calvert N (2006) The legionnaires' outbreak in Barrow-in-Furness, summer 2002. J Epidemiol Community Health 60:464–466

    Article  PubMed  Google Scholar 

  • Temmerman R, Vervaeren H, Noseda B, Boon N, Verstraete W (2006) Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328

    Article  PubMed  CAS  Google Scholar 

  • Tesh MJ, Miller RD (1981) Amino acid requirements for Legionella pneumophila growth. J Clin Microbiol 13:865–869

    PubMed  CAS  Google Scholar 

  • Tesh MJ, Morse SA, Miller RD (1983) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154:1104–1109

    PubMed  CAS  Google Scholar 

  • Thacker WL, Benson RF, Hawes L, Gidding H, Dwyer B, Mayberry WR, Brenner DJ (1991) Legionella fairfieldensis sp. nov. isolated from cooling tower waters in Australia. J Clin Microbiol 29:475–478

    PubMed  CAS  Google Scholar 

  • Thacker WL, Benson RF, Schifman RB, Pugh E, Steigerwalt AG, Mayberry WR, Brenner DJ, Wilkinson HW (1989) Legionella tucsonensis sp. nov. isolated from a renal transplant recipient. J Clin Microbiol 27:1831–1834

    PubMed  CAS  Google Scholar 

  • Thacker WL, Benson RF, Staneck JL, Vincent SR, Mayberry WR, Brenner DJ, Wilkinson HW (1988) Legionella cincinnatiensis sp. nov. isolated from a patient with pneumonia. J Clin Microbiol 26:418–420

    PubMed  CAS  Google Scholar 

  • Thacker WL, Dyke JW, Benson RF, Havlichek DH, Jr, Robinson-Dunn B, Stiefel H, Schneider W, Moss CW, Mayberry WR, Brenner DJ (1992) Legionella lansingensis sp. nov. isolated from a patient with pneumonia and underlying chronic lymphocytic leukemia. J Clin Microbiol 30:2398–2401

    PubMed  CAS  Google Scholar 

  • Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438

    Article  PubMed  CAS  Google Scholar 

  • Thomas V, McDonnell G, Denyer SP, Maillard JY (2010) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34:231–259

    Article  PubMed  CAS  Google Scholar 

  • Thompson PR, Hughes DW, Cianciotto NP, Wright GD (1998) Spectinomycin kinase from Legionella pneumophila. Characterization of substrate specificity and identification of catalytically important residues. J Biol Chem 273:14788–14795

    Article  PubMed  CAS  Google Scholar 

  • Thorsted PB, Macartney DP, Akhtar P, Haines AS, Ali N, Davidson P, Stafford T, Pocklington MJ, Pansegrau W, Wilkins BM, Lanka E, Thomas CM (1998) Complete sequence of the IncPbeta plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol 282:969–990

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Hilbi H (2012) a-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors 12:2899–2919

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Spirig T, Carranza P, Bruggemann H, Riedel K, Eberl L, Buchrieser C, Hilbi H (2008) Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol 190:7532–47

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Spirig T, Hilbi H (2010a) Bacterial gene regulation by alpha-hydroxyketone signaling. Trends Microbiol 18:288–97

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Spirig T, Sahr T, Walti MA, Boucke K, Buchrieser C, Hilbi H (2010b) The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of Legionella pneumophila. Environ Microbiol 12:1243–59

    Article  PubMed  CAS  Google Scholar 

  • Tiaden A, Spirig T, Weber SS, Bruggemann H, Bosshard R, Buchrieser C, Hilbi H (2007) The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol 9:2903–20

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114:4637–50

    PubMed  CAS  Google Scholar 

  • Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  PubMed  CAS  Google Scholar 

  • Tison DL, Pope DH, Cherry WB, Fliermans CB (1980) Growth of Legionella pneumophila in association with blue-green algae (cyanobacteria). Appl Environ Microbiol 39:456–459

    PubMed  CAS  Google Scholar 

  • Tobiansky L, Drath A, Dubery B, Koornhof HJ (1986) Seasonality of Legionella isolates from environmental sources. Isr J Med Sci 22:640–643

    PubMed  CAS  Google Scholar 

  • Tossa P, Deloge-Abarkan M, Zmirou-Navier D, Hartemann P, Mathieu L (2006) Pontiac fever: an operational definition for epidemiological studies. BMC Public Health 6:112

    Article  PubMed  Google Scholar 

  • Towns ML, Fisher D, Moore J (1994) Community-acquired pneumonia due to Legionella gormanii. Clin Infect Dis 18:265–266

    Article  PubMed  CAS  Google Scholar 

  • Tsai TF, Finn DR, Plikaytis BD, McCauley W, Martin SM, Fraser DW (1979) Legionnaires’ disease: clinical features of the epidemic in Philadelphia. Ann Intern Med 90:509–517

    PubMed  CAS  Google Scholar 

  • Tubach F, Ravaud P, Salmon-Ceron D, Petitpain N, Brocq O, Grados F, Guillaume JC, Leport J, Roudaut A, Solau-Gervais E, Lemann M, Mariette X, Lortholary O (2006) Emergence of Legionella pneumophila pneumonia in patients receiving tumor necrosis factor-alpha antagonists. Clin Infect Dis 43:e95–100

    Article  PubMed  CAS  Google Scholar 

  • Turetgen I, Cotuk A (2007) Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system. Environ Monit Assess 125:271–279

    Article  PubMed  CAS  Google Scholar 

  • Turick CE, Tisa LS, Caccavo F, Jr (2002) Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68:2436–2444

    Article  PubMed  CAS  Google Scholar 

  • Tyndall RL, Domingue EL (1982) Cocultivation of Legionella pneumophila and free-living amoebae. Appl Environ Microbiol 44:954–959

    PubMed  CAS  Google Scholar 

  • Tzivelekidis T, Jank T, Pohl C, Schlosser A, Rospert S, Knudsen CR, Rodnina MV, Belyi Y, Aktories K (2011) Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases. PLoS One 6:e29525

    Article  PubMed  CAS  Google Scholar 

  • Unal C, Schwedhelm KF, Thiele A, Weiwad M, Schweimer K, Frese F, Fischer G, Hacker J, Faber C, Steinert M (2011) Collagen IV-derived peptide binds hydrophobic cavity of Legionella pneumophila Mip and interferes with bacterial epithelial transmigration. Cell Microbiol 13:1558–1572

    Article  PubMed  CAS  Google Scholar 

  • Urwyler S, Finsel I, Ragaz C, Hilbi H (2010) Isolation of Legionella-containing vacuoles by immuno-magnetic separation. Curr Protoc Cell Biol Chapter 3:Unit 3:34

    Google Scholar 

  • Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H (2009) Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10:76–87

    Article  PubMed  CAS  Google Scholar 

  • Valster RM, Wullings BA, van den Berg R, van der Kooij D (2011) Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl Environ Microbiol 77:7321–7328

    Article  PubMed  CAS  Google Scholar 

  • Valster RM, Wullings BA, van der Kooij D (2010) Detection of protozoan hosts for Legionella pneumophila in engineered water systems by using a biofilm batch test. Appl Environ Microbiol 76:7144–7153

    Article  PubMed  CAS  Google Scholar 

  • Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ (2004) The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci USA 101:2135–2139

    Article  PubMed  CAS  Google Scholar 

  • Vandenesch F, Surgot M, Bornstein N, Paucod JC, Marmet D, Isoard P, Fleurette J (1990) Relationship between free amoeba and Legionella: studies in vitro and in vivo. Zbl Bakt 272:265–275

    CAS  Google Scholar 

  • Vandersmissen L, De Buck E, Saels V, Coil DA, Anne J (2010) A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells. FEMS Microbiol Lett 306:168–176

    Article  PubMed  CAS  Google Scholar 

  • VanRheenen SM, Luo ZQ, O'Connor T, Isberg RR (2006) Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun 74:3597–3606

    Article  PubMed  CAS  Google Scholar 

  • Venezia RA, Agresta MD, Hanley EM, Urquhart K, Schoonmaker D (1994) Nosocomial legionellosis associated with aspiration of nasogastric feedings diluted in tap water. Infect Control Hosp Epidemiol 15:529–533

    Article  PubMed  CAS  Google Scholar 

  • Verbrugh HA, Lee DA, Elliott GR, Keane WF, Hoidal JR, Peterson PK (1985) Opsonization of Legionella pneumophila in human serum: key roles for specific antibodies and the classical complement pathway. Immunology 54:643–653

    PubMed  CAS  Google Scholar 

  • Vergnes M, Ginevra C, Kay E, Normand P, Thioulouse J, Jarraud S, Maurin M, Schneider D (2011) Insertion sequences as highly resolutive genomic markers for sequence type 1 Legionella pneumophila Paris. J Clin Microbiol 49:315–324

    Article  PubMed  Google Scholar 

  • Verissimo A, Marrao G, Gomes da Silva F, Da Costa MS (1991) Distribution of Legionella spp. in hydrothermal areas in continental Portugal and the island of Sao Miguel. Azores Appl Environ Microbiol 57:2921–2927

    CAS  Google Scholar 

  • Verma UK, Brenner DJ, Thacker WL, Benson RF, Vesey G, Kurtz JB, Dennis PJ, Steigerwalt AG, Robinson JS, Moss CW (1992) Legionella shakespearei sp. nov., isolated from cooling tower water. Int J Syst Bacteriol 42:404–407

    Article  PubMed  CAS  Google Scholar 

  • Vervaeren H, Temmerman R, Devos L, Boon N, Verstraete W (2006) Introduction of a boost of Legionella pneumophila into a stagnant-water model by heat treatment. FEMS Microbiol Ecol 58:583–592

    Article  PubMed  CAS  Google Scholar 

  • Vickers RM, Stout JE, Yu VL, Rihs JD (1987) Manual of culture methodology for Legionella. Semin Respir Infect 2:274–9

    PubMed  CAS  Google Scholar 

  • Vickers RM, Yu VL (1984) Clinical laboratory differentiation of Legionellaceae family members with pigment production and fluorescence on media supplemented with aromatic substrates. J Clin Microbiol 19:583–587

    PubMed  CAS  Google Scholar 

  • Vinzing M, Eitel J, Lippmann J, Hocke AC, Zahlten J, Slevogt H, N’Guessan PD, Gunther S, Schmeck B, Hippenstiel S, Flieger A, Suttorp N, Opitz B (2008) NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180:6808–6815

    PubMed  CAS  Google Scholar 

  • Viswanathan VK, Edelstein PH, Pope CD, Cianciotto NP (2000) The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 68:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan VK, Kurtz S, Pedersen LL, Abu-Kwaik Y, Krcmarik K, Mody S, Cianciotto NP (2002) The cytochrome c maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element. Infect Immun 70:1842–1852

    Article  PubMed  CAS  Google Scholar 

  • Vivian JP, Riedmaier P, Ge H, Le Nours J, Sansom FM, Wilce MC, Byres E, Dias M, Schmidberger JW, Cowan PJ, D’ Apice AJ, Hartland EL, Rossjohn J, Beddoe T (2010) Crystal structure of a Legionella pneumophila ecto -triphosphate diphosphohydrolase, a structural and functional homolog of the eukaryotic NTPDases. Structure 18:228–238

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–6

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Isberg RR (1999) Cell biology of Legionella pneumophila. Curr Opin Microbiol 2:30–4

    Article  PubMed  CAS  Google Scholar 

  • von Baum H, Ewig S, Marre R, Suttorp N, Gonschior S, Welte T, Luck C (2008) Community-acquired Legionella pneumonia: new insights from the German competence network for community acquired pneumonia. Clin Infect Dis 46:1356–1364

    Article  Google Scholar 

  • Voth DE, Howe D, Beare PA, Vogel JP, Unsworth N, Samuel JE, Heinzen RA (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191:4232–42

    Article  PubMed  CAS  Google Scholar 

  • Wadowsky RM, Butler LJ, Cook MK, Verma SM, Paul MA, Fields BS, Keleti G, Sykora JL, Yee RB (1988) Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors. Appl Environ Microbiol 54:2677–2682

    PubMed  CAS  Google Scholar 

  • Wadowsky RM, Wilson TM, Kapp NJ, West AJ, Kuchta JM, States SJ, Dowling JN, Yee RB (1991) Multiplication of Legionella spp. in tap water containing Hartmannella vermiformis. Appl Environ Microbiol 57:1950–1955

    PubMed  CAS  Google Scholar 

  • Wadowsky RM, Wolford R, McNamara AM, Yee RB (1985) Effect of temperature, pH, and oxygen level on the multiplication of naturally occurring Legionella pneumophila in potable water. Appl Environ Microbiol 49:1197–1205

    PubMed  CAS  Google Scholar 

  • Wadowsky RM, Yee RB (1981) Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens. Appl Environ Microbiol 42:768–772

    PubMed  CAS  Google Scholar 

  • Wagner C, Khan AS, Kamphausen T, Schmausser B, Unal C, Lorenz U, Fischer G, Hacker J, Steinert M (2007) Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. Cell Microbiol 9:450–462

    Article  PubMed  CAS  Google Scholar 

  • Walker JT, Sonesson A, Keevil CW, White DC (1993) Detection of Legionella pneumophila in biofilms containing a complex microbial consortium by gas chromatography-mass spectrometry analysis of genus-specific hydroxy fatty acids. FEMS Microbiol Lett 113:139–144

    Article  PubMed  CAS  Google Scholar 

  • Wallensten A, Oliver I, Ricketts K, Kafatos G, Stuart JM, Joseph C (2010) Windscreen wiper fluid without added screenwash in motor vehicles: a newly identified risk factor for Legionnaires' disease. Eur J Epidemiol 25:661–665

    Article  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Microbiol 10:57–63

    Article  CAS  Google Scholar 

  • Warren WJ, Miller RD (1979) Growth of Legionnaires disease bacterium (Legionella pneumophila) in chemically defined medium. J Clin Microbiol 10:50–55

    PubMed  CAS  Google Scholar 

  • Wassarman KM (2007) 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 10:164–8

    Article  PubMed  CAS  Google Scholar 

  • Watson JH, Sun CN (1981) Scanning electron microscopy of Legionella pneumophila in clinical tissue. Scanning Elect Microscr 3:55–64

    Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009a) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–60

    Article  PubMed  CAS  Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009b) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–52

    Article  PubMed  CAS  Google Scholar 

  • Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2:e46

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum DL, Benner RR, Dowling JN, Alpern A, Pasculle AW, Donowitz GR (1984) Interaction of Legionella micdadei with human monocytes. Infect Immun 46:68–73

    PubMed  CAS  Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15:390–394

    Article  PubMed  CAS  Google Scholar 

  • Weir SC, Fischer SH, Stock F, Gill VJ (1998) Detection of Legionella by PCR in respiratory specimens using a commercially available kit. Am J Clin Pathol 110:295–300

    PubMed  CAS  Google Scholar 

  • Weisburg WG, Dobson ME, Samuel JE, Dasch GA, Mallavia LP, Baca O, Mandelco L, Sechrest JE, Weiss E, Woese CR (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171:4202–4206

    PubMed  CAS  Google Scholar 

  • Weissenmayer BA, Prendergast JG, Lohan AJ, Loftus BJ (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6:e17570

    Article  PubMed  CAS  Google Scholar 

  • Whiley H, Bentham R (2011) Legionella longbeachae and legionellosis. Emerg Infect Dis 17:579–583

    Article  PubMed  Google Scholar 

  • White HJ, Sun CN, Hui AN (1979) An ultrastructural demonstration of the agent of Legionnaires' disease in the human lung. Hum Pathol 10:96–99

    Article  PubMed  CAS  Google Scholar 

  • Whitfield NN, Byrne BG, Swanson MS (2010) Mouse macrophages are permissive to motile Legionella species that fail to trigger pyroptosis. Infect Immun 78:423–432

    Article  PubMed  CAS  Google Scholar 

  • Wieland H, Faigle M, Lang F, Northoff H, Neumeister B (2002) Regulation of the Legionella mip-promotor during infection of human monocytes. FEMS Microbiol Lett 212:127–132

    Article  PubMed  CAS  Google Scholar 

  • Wieland H, Ullrich S, Lang F, Neumeister B (2005) Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol Microbiol 55:1528–37

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson HW, Drasar V, Thacker WL, Benson RF, Schindler J, Potuznikova B, Mayberry WR, Brenner DJ (1988) Legionella moravica sp. nov. and Legionella brunensis sp. nov. isolated from cooling-tower water. Ann Inst Pasteur Microbiol 139:393–402

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson HW, Reingold AL, Brake BJ, McGiboney DL, Gorman GW, Broome CV (1983) Reactivity of serum from patients with suspected legionellosis against 29 antigens of legionellaceae and Legionella-like organisms by indirect immunofluorescence assay. J Infect Dis 147:23–31

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson HW, Thacker WL, Benson RF, Polt SS, Brookings E, Mayberry WR, Brenner DJ, Gilley RG, Kirklin JK (1987) Legionella birminghamensis sp. nov. isolated from a cardiac transplant recipient. J Clin Microbiol 25:2120–2122

    PubMed  CAS  Google Scholar 

  • Wilkinson HW, Thacker WL, Steigerwalt AG, Brenner DJ, Ampel NM, Wing EJ (1985) Second serogroup of Legionella hackeliae isolated from a patient with pneumonia. J Clin Microbiol 22:488–489

    PubMed  CAS  Google Scholar 

  • Williams A, Baskerville A, Dowsett AB, Conlan JW (1987) Immunocytochemical demonstration of the association between Legionella pneumophila, its tissue-destructive protease, and pulmonary lesions in experimental Legionnaires' disease. J Pathol 153:257–264

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of gammaproteobacteria. J Bacteriol 192:2305–2314

    Article  PubMed  CAS  Google Scholar 

  • Williams MM, Braun-Howland EB (2003) Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine. Appl Environ Microbiol 69:5463–5471

    Article  PubMed  CAS  Google Scholar 

  • Wingender J, Flemming HC (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214:417–423

    Article  PubMed  Google Scholar 

  • Winn WC, Jr, Davis GS, Gump DW, Craighead JE, Beaty HN (1982) Legionnaires' pneumonia after intratracheal inoculation of guinea pigs and rats. Lab Invest 47:568–578

    PubMed  Google Scholar 

  • Winn WCJ (1988) Legionnaires disease: historical perspective. Clin Microbiol Rev 1:60–81

    PubMed  Google Scholar 

  • Wintermeyer E, Flugel M, Ott M, Steinert M, Rdest U, Mann KH, Hacker J (1994) Sequence determination and mutational analysis of the lly locus of Legionella pneumophila. Infect Immun 62:1109–1117

    PubMed  CAS  Google Scholar 

  • Wintermeyer E, Ludwig B, Steinert M, Schmidt B, Fischer G, Hacker J (1995) Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells. Infect Immun 63:4576–4583

    PubMed  CAS  Google Scholar 

  • Wintermeyer E, Rdest U, Ludwig B, Debes A, Hacker J (1991) Characterization of legiolysin (lly), responsible for haemolytic activity, colour production and fluorescence of Legionella pneumophila. Mol Microbiol 5:1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Wong KH, Moss CW, Hochstein DH, Arko RJ, Schalla WO (1979) “Endotoxicity” of the Legionnaires' disease bacterium. Ann Int Med 90:624–627

    PubMed  CAS  Google Scholar 

  • Woo AH, Goetz A, Yu VL (1992) Transmission of Legionella by respiratory equipment and aerosol generating devices. Chest 102:1586–1590

    Article  PubMed  CAS  Google Scholar 

  • Woodhead M (2002) Community-acquired pneumonia in Europe: causative pathogens and resistance patterns. Eur Respir J Suppl 36:20s–27s

    Article  PubMed  CAS  Google Scholar 

  • Wrase R, Scott H, Hilgenfeld R, Hansen G (2011) The Legionella HtrA homologue DegQ is a self-compartmentizing protease that forms large 12-meric assemblies. Proc Natl Acad Sci USA 108:10490–10495

    Article  PubMed  CAS  Google Scholar 

  • Wright EK, Goodart SA, Growney JD, Hadinoto V, Endrizzi MG, Long EM, Sadigh K, Abney AL, Bernstein-Hanley I, Dietrich WF (2003) Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13:27–36

    Article  PubMed  CAS  Google Scholar 

  • Wright JB, Ruseska I, Athar MA, Corbett S, Costerton JW (1989) Legionella pneumophila grows adherent to surfaces in vitro and in situ. Infect Control Hosp Epidemiol 10:408–415

    Article  PubMed  CAS  Google Scholar 

  • Wright JB, Ruseska I, Costerton JW (1991) Decreased biocide susceptibility of adherent Legionella pneumophila. J Appl Bacteriol 71:531–538

    Article  PubMed  CAS  Google Scholar 

  • Wright LP, Philips MR (2006) Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47:883–91

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O'Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

    Article  PubMed  Google Scholar 

  • Wullings BA, van der Kooij D (2006) Occurrence and genetic diversity of uncultured Legionella spp. in drinking water treated at temperatures below 15 degrees C. Appl Environ Microbiol 72:157–166

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Hashimoto Y, Ezaki T (1996) Study of nonculturable Legionella pneumophila cells during multiple-nutrient starvation. FEMS Microbiol Ecol 20:149–154

    Article  CAS  Google Scholar 

  • Yamamoto H, Sugiura M, Kusunoki S, Ezaki T, Ikedo M, Yabuuchi E (1992a) Factors stimulating propagation of Legionellae in cooling tower water. Appl Environ Microbiol 58:1394–1397

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Klein TW, Friedman H (1992b) Genetic control of macrophage susceptibility to infection by Legionella pneumophila. FEMS Microbiol Immunol 89:137–146

    Article  Google Scholar 

  • Yamamoto Y, Klein TW, Newton CA, Widen R, Friedman H (1987) Differential growth of Legionella pneumophila in guinea pig versus mouse macrophage cultures. Infect Immun 55:1369–1374

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Klein TW, Newton CA, Widen R, Friedman H (1988) Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun 56:370–375

    PubMed  CAS  Google Scholar 

  • Yan L, Cirillo JD (2004) Infection of murine macrophage cell lines by Legionella pneumophila. FEMS Microbiol Lett 230:147–152

    Article  PubMed  CAS  Google Scholar 

  • Yanez ME, Korotkov KV, Abendroth J, Hol WG (2008) Structure of the minor pseudopilin EpsH from the Type 2 secretion system of Vibrio cholerae. J Mol Biol 377:91–103

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Benson RF, Ratcliff R, Brown EW, Steigerwalt AG, Thacker LW, Daneshvar M, Morey RE, Saito A, Fields BS (2011) Legionella nagasakiensis sp. nov., isolated from water samples in Japan and Australia and from a patient with pneumonia in the United States. Int J Syst Evol Microbiol 62:248–288

    Google Scholar 

  • Yaradou DF, Raze D, Ginevra C, Ader F, Doleans-Jordheim A, Vandenesch F, Menozzi FD, Etienne J, Jarraud S (2007) Zinc-dependent cytoadherence of Legionella pneumophila to human alveolar epithelial cells in vitro. Microb Pathog 43:234–242

    Article  PubMed  CAS  Google Scholar 

  • Yip ES, Burnside DM, Cianciotto NP (2011) Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection. Microbiology 157:868–878

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Goto Y, Mizuguchi Y, Nomoto K, Skamene E (1991) Genetic control of natural resistance in mouse macrophages regulating intracellular Legionella pneumophila multiplication in vitro. Infect Immun 59:428–432

    PubMed  CAS  Google Scholar 

  • Yoshida S, Mizuguchi Y (1986) Multiplication of Legionella pneumophila Philadelphia-1 in cultured peritoneal macrophages and its correlation to susceptibility of animals. Can J Microbiol 32:438–442

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Higa F, Koide M, Haranaga S, Yara S, Tateyama M, Li H, Fujita J (2009) Lung abscess caused by Legionella species: implication of the immune status of hosts. Intern Med 48:1997–2002

    Article  PubMed  Google Scholar 

  • Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath CM, Paterson DL, Chereshsky A (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186:127–128

    Article  PubMed  Google Scholar 

  • Yu VL, Stout JE (2008) Community-acquired legionnaires disease: implications for underdiagnosis and laboratory testing. Clin Infect Dis 46:1365–1367

    Article  PubMed  Google Scholar 

  • Yzerman EP, den Boer JW, Lettinga KD, Schellekens J, Dankert J, Peeters MF (2002) Sensitivity of three urinary antigen tests associated with clinical severity in a large outbreak of Legionnaires' disease in The Netherlands. J Clin Microbiol 40:3232–3236

    Article  PubMed  Google Scholar 

  • Zahringer U, Knirel YA, Lindner B, Helbig JH, Sonesson A, Marre R, Rietschel ET (1995) The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 392:113–139

    PubMed  CAS  Google Scholar 

  • Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325

    Article  PubMed  CAS  Google Scholar 

  • Zarogoulidis P, Alexandropoulou I, Romanidou G, Konstasntinidis TG, Terzi E, Saridou S, Stefanis A, Zarogoulidis K, Constantinidis TC (2011) Community-acquired pneumonia due to Legionella pneumophila, the utility of PCR, and a review of the antibiotics used. Int J Gen Med 4:15–19

    Article  PubMed  Google Scholar 

  • Zgurskaya HI (2009) Multicomponent drug efflux complexes: architecture and mechanism of assembly. Future Microbiol 4:919–932

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou D (2006) The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol 62:786–93

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ (2011) Comprehensive identification of protein substrates of the Dot/Icm type iv transporter of Legionella pneumophila. PLoS One 6:e17638

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Hu L, Zhou Y, Yao Q, Liu L, Shao F (2010) Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci USA 107:4699–704

    Article  PubMed  CAS  Google Scholar 

  • Zou CH, Knirel YA, Helbig JH, Zahringer U, Mintz CS (1999) Molecular cloning and characterization of a locus responsible for O acetylation of the O polysaccharide of Legionella pneumophila serogroup 1 lipopolysaccharide. J Bacteriol 181:4137–4141

    PubMed  CAS  Google Scholar 

  • Zuckman DM, Hung JB, Roy CR (1999) Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol Microbiol 32:990–1001

    Article  PubMed  CAS  Google Scholar 

  • Zusman T, Aloni G, Halperin E, Kotzer H, Degtyar E, Feldman M, Segal G (2007) The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63:1508–1523

    Article  PubMed  CAS  Google Scholar 

  • Zusman T, Degtyar E, Segal G (2008) Identification of a hypervariable region containing new Legionella pneumophila Icm/Dot translocated substrates by using the conserved icmQ regulatory signature. Infect Immun 76:4581–4591

    Article  PubMed  CAS  Google Scholar 

  • Zusman T, Gal-Mor O, Segal G (2002) Characterization of a Legionella pneumophila relA insertion mutant and toles of RelA and RpoS in virulence gene expression. J Bacteriol 184:67–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in CB’s group received financial support from the Institut Pasteur, the Centre National de la Recherche (CNRS) the Institut Carnot-Pasteur MI the Fondation pour la Recherche Médicale (FRM), the grant n°ANR-10-LABX-62-IBEID and the ANR-10-PATH-004 project MobilGenomics, in the frame of ERA-Net PathoGenoMics. Research in HH’s group was funded by the Max von Pettenkofer Institute, LMU Munich, the DFG (HI 1511/1-1, HI 1511/1-2, SPP1316, SPP1580, SPP1617, SFB914), the BMBF (“Medical Infection Genomics” initiative, grant 0315834C) and the SNF (31003A-125369; Sinergia CRSI33_130016). Research in NC’s group was funded, in part, by NIH grants AI034937, AI043987 and AI076693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Buchrieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cianciotto, N.P., Hilbi, H., Buchrieser, C. (2013). Legionnaires’ Disease. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30144-5_94

Download citation

Publish with us

Policies and ethics