Skip to main content

Reactive Oxygen and Nitrogen Species – A Driving Force in Amyotrophic Lateral Sclerosis

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressive neurodegenerative disease. Multiple pathogenic mechanisms contribute to motoneuron injury in ALS that involve the following: (1) misfolded proteins; (2) mitochondrial dysfunction; (3) neurofilament/cytoskeletal alterations; (4) mRNA mishandling from mRNA processing to translation; (5) endoplasmic reticulum (ER) and Golgi dysfunction including ER stress, the unfolded protein response (UPR), and protein degradation malfunction; (6) neuroinflammation with subsequent oxidative injury and neurotoxicity; and (7) astroglial alterations. However, the initiating pathogenic mechanism and the ensuing pathogenic processes responsible for spreading the disease from the original site of initiation are not clearly delineated. Reactive oxygen and nitrogen species (RONS) play significant roles exacerbating disease in ALS by aggravating all of the pathogenic mechanisms that induce motoneuron injury. The reactive species include nitric oxide (NO), superoxide (O2 •−), hydrogen peroxide (H2O2), and peroxynitrite. One of, if not the main source of RONS in the CNS in ALS, is microglia. Microglia are activated at the onset of disease and become increasingly activated with disease progression, generating escalating levels of O2 •− from NADPH oxidase and NO by iNOS. Excess O2 •− is also generated in motoneurons from mitochondrial respiration, and NO is generated by motoneurons and astroglia with disease progression. The NO rapidly reacts with O2 •− to form peroxynitrite, a highly toxic RONS which modifies DNA, proteins, and lipids. In this chapter, the proposed mechanisms of motoneuron injury will each be discussed based on what occurs in patients and animal models, including a discussion on the roles RONS play in aggravating the pathologies.

((it should be just cited at the end unter Acknowledgment was ist done on pa. 3153)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7(11):603–615

    Article  CAS  PubMed  Google Scholar 

  • Arciello M, Capo CR, Cozzolino M et al (2010) Inactivation of cytochrome c oxidase by mutant SOD1s in mouse motoneuronal NSC-34 cells is independent from copper availability but is because of nitric oxide. J Neurochem 112(1):183–192

    Article  CAS  PubMed  Google Scholar 

  • Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK (2008) Endoplasmic reticulum stress and induction of the unfolded protein response in human amyotrophic lateral sclerosis. Neurobiol Dis 30(3):400–407

    Article  CAS  PubMed  Google Scholar 

  • Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641

    Article  CAS  PubMed  Google Scholar 

  • Beers DR, Henkel JS, Xiao Q et al (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 103:16021–16026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beers DR, Henkel JS, Zhao W et al (2008) CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci USA 105:15558–15563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boillée S, Cleveland DW (2008) Revisiting oxidative damage in ALS: microglia, Nox, and mutant SOD1. J Clin Invest 118(2):474–478

    PubMed Central  PubMed  Google Scholar 

  • Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  CAS  PubMed  Google Scholar 

  • Boillée S, Yamanaka K, Lobsiger CS et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    Article  PubMed  Google Scholar 

  • Bosco DA, Morfini G, Karabacak NM et al (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13(11):1396–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen K, Northington FJ, Martin LJ (2010) Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice. Brain Struct Funct 214(2–3):219–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chun SJ, Jaffa M, Winer L et al (2010) Examinations of SOD1 protein levels in the CSF of ALS patients. Neurol 74(9) suppl.2; S16.004

    Google Scholar 

  • Clement AM, Nguyen MD, Roberts EA et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino M, Carrì MT (2011) Mitochondrial dysfunction in ALS. Prog Neurobiol

    Google Scholar 

  • Cudkowicz M, Bozik ME, Ingersoll EW et al (2011) The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat Med 17(12):1652–1656

    Article  CAS  PubMed  Google Scholar 

  • Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol (in press)

    Google Scholar 

  • Dejesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron (in press)

    Google Scholar 

  • Díaz-Amarilla P, Olivera-Bravo S, Trias E et al (2011) Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 108(44):18126–18131

    Article  PubMed Central  PubMed  Google Scholar 

  • Duffy LM, Chapman AL, Shaw PJ et al (2011) The role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 37:336–352

    Article  CAS  PubMed  Google Scholar 

  • Ekestern E (2004) Neurotrophic factors and amyotrophic lateral sclerosis. Neurodegen Dis 1(2–3):88–100

    Article  CAS  Google Scholar 

  • Ezzi SA, Larivière R, Urushitani M et al (2010) Neuronal over-expression of chromogranin A accelerates disease onset in a mouse model of ALS. J Neurochem 115(5):1102–1111

    Article  PubMed  Google Scholar 

  • Ferraiuolo L, Kirby J, Grierson AJ et al (2011a) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):616–630

    Article  CAS  PubMed  Google Scholar 

  • Ferraiuolo L, Higginbottom A, Heath PR et al (2011b) Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134(Pt 9):2627–2641

    Article  PubMed Central  PubMed  Google Scholar 

  • Foran E, Bogush A, Goffredo M et al (2011) Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 59(11):1719–1731

    Article  PubMed Central  PubMed  Google Scholar 

  • Forsberg K, Andersen PM, Marklund SL (2011) Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol 121(5):623–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gagliardi S, Cova E, Davin A et al (2010) SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis. Neurobiol Dis 39(2):198–203

    Article  CAS  PubMed  Google Scholar 

  • Gong YH, Parsadanian AS, Andreeva A et al (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci 20(2):660–665

    CAS  PubMed  Google Scholar 

  • Guest WC, Silverman JM, Pokrishevsky E, O’Neil MA, Grad LI, Cashman NR (2011) Generalization of the prion hypothesis to other neurodegenerative disease: an imperfect fit. J Toxicol Environ Health A 74(22–24):1433–1459.

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Lai L, Butchbach ME et al (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12(19):2519–2532

    Article  CAS  PubMed  Google Scholar 

  • Haidet-Phillips AM, Hester ME, Miranda CJ et al (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29(9):824–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):639–649

    Article  CAS  PubMed  Google Scholar 

  • Henkel JS, Beers DR, Zhao W et al (2009) Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 4:389–398

    Article  PubMed  Google Scholar 

  • Hernández S, Casanovas A, Piedrafita L et al (2010) Neurotoxic species of misfolded SOD1G93A recognized by antibodies against the P2X4 subunit of the ATP receptor accumulate in damaged neurons of transgenic animal models of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 69(2):176–187

    Article  PubMed  Google Scholar 

  • Ilieva EV, Ayala V, Jove M, Dalfo E, Carcabelos D, Povedano M, Bellmunt MJ, Ferrer I, Pamplona R, Portero-Otin X (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130(Pt 12):3111–3123

    Article  PubMed  Google Scholar 

  • Jaarsma D, Teuling E, Haasdijk ED et al (2008) Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J Neurosci 28:2075–2088

    Article  CAS  PubMed  Google Scholar 

  • Joyce PI, Fratta P, Fisher EM et al (2011) SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome 22(7–8):420–448

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Lee SG, Kegelman TP et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19(R1):R46–R64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lasiene J, Yamanaka K (2011) Glial cells in amyotrophic lateral sclerosis. Neurol Res Int 2011:718987

    Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Spencer NY, Pantazis NJ et al (2011) ALSIN and SOD1G93A regulate endosomal ROS production by glial cells and pro-inflammatory pathways responsible for neurotoxicity. J Biol Chem (in press)

    Google Scholar 

  • Lobsiger CS, Boillee S, McAlonis-Downes M et al (2009) Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci USA 106(11):4465–4470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9(10):995–1007

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie IR, Ansorge O, Strong M et al (2011) Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation. Acta Neuropathol 122(1):87–98

    Article  PubMed Central  PubMed  Google Scholar 

  • Meissner F, Molawi K, Zychlinsky A (2010) Mutant superoxide dismutase 1-induced IL-1beta accerates ALS pathogenesis. Proc Natl Acad Sci USA 107(29):13046–13050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagai M, Re DB, Nagata T et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622, Epub 2007 Apr 15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naganska E, Matyja E (2011) Amyotrophic lateral sclerosis – looking for the pathogenesis and effective therapy. Folia Neuropathol 49(1):1–13

    PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

    Article  CAS  PubMed  Google Scholar 

  • Papadeas ST, Kraig SE, O’Banion C, Lepore AC, Maragakis NJ (2011) Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci USA 108(43):17803–17808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pedrini S, Sau D, Guareschi S et al (2010) ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2. Hum Mol Genet 19(15):2974–2986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263

    Article  CAS  PubMed  Google Scholar 

  • Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147(3):498–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron (in press)

    Google Scholar 

  • Reyes NA, Fisher JK, Austgen K et al (2010) Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest 120(10):3673–3679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki S (2010) Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 69(4):346–355

    Article  PubMed  Google Scholar 

  • Saxena S, Cabury E, Caroni P (2009) A role for motoneuron subtype – selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627-636

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Chiang PM, Price DL et al (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107(37):16325–16330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soon CP, Donnelly PS, Turner BJ et al (2011) CUII(ATSM) protects against peroxynitrite-induced nitrosative damage and prolongs survival in an amyotrophic lateral sclerosis mouse model. J Biol Chem (in press)

    Google Scholar 

  • Stieber A, Gonatas JO, Gonatas NK (2000) Aggregates of mutant protein appear progressively in dendrites, in periaxonal processes of oligodendrocytes, and in neuronal and astrocytic perikarya of mice expressing the SOD1(G93A) mutation of familial amyotrophic lateral sclerosis. J Neurol Sci 177(2):114–123

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Lee K, Matsuoka M (2011) TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem 286(15):13171–13183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swarup V, Phaneuf D, Dupré N et al (2011) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J Exp Med 208(12):2429–2447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ticozzi N, Tiloca C, Morelli C et al (2011) Genetics of familial Amyotrophic lateral sclerosis. Arch Ital Biol 149(1):65–82

    PubMed  Google Scholar 

  • Traub R, Mitsumoto H, Rowland LP (2011) Research advances in amyotrophic lateral sclerosis, 2009 to 2010. Curr Neurol Neurosci Rep 11(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Turner BJ, Atkin JD, Farg MA et al (2005) Impaired extracellular secretion of mutant superoxide dismutase 1 associates with neurotoxicity in familial amyotrophic lateral sclerosis. J Neurosci 25:108–117

    Article  CAS  PubMed  Google Scholar 

  • Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85(1):94–134

    Article  CAS  PubMed  Google Scholar 

  • Turner BJ, Ackerley S, Davies KE et al (2010) Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice. Hum Mol Genet 19(5):815–824

    Article  CAS  PubMed  Google Scholar 

  • Urushitani M, Shimohama S (2001) The role of nitric oxide in amyotrophic lateral sclerosis. Amyotroph Lateral Scler other Motor Neuron Disord 2(2):71–81

    Article  CAS  PubMed  Google Scholar 

  • Van Damme P, Bogaert E, Dewil M et al (2007) Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci USA 104:14825–14830

    Article  PubMed Central  PubMed  Google Scholar 

  • Vande-Velde C, McDonald KK, Boukhedimi Y et al (2011) Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 6(7):e22031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas MR, Johnson JA (2010) Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 7(4):471–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veiga S, Ly J, Chan PH et al (2011) SOD1 overexpression improves features of the oligodendrocyte precursor response in vitro. Neurosci Lett 503(1):10–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker AK, Atkin JD (2011) Stress signaling from the endoplasmic reticulum: a central player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life. doi:10.1002/iub.520

    PubMed  Google Scholar 

  • Wang L, Gutmann DH, Roos RP (2011) Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet 20(2):286–293

    Article  CAS  PubMed  Google Scholar 

  • Weiss JH (2011) Ca2+ permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci 4:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu YF, Gendron TF, Zhang YJ (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30(32):10851–10859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanaka K, Boillée S, Roberts EA et al (2008a) Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA 105:7594–7599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanaka K, Chun SJ, Boillée S et al (2008b) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Beers DR, Henkel JS, Zhang W, Urushitani M, Julien J-P, Appel SH (2010) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58(2):231–243

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is published in loving memory of Dr. Jenny S. Henkel who died suddenly and unexpectedly on January 5, 2013. The memory of Dr. Henkel will last through her writings and through the people she touched. May this chapter serve as another wonderful aspect in her brilliant and lasting legacy. She is greatly missed.

Conflict of Interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Beers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Henkel, J.S., Beers, D.R., Zhao, W., Appel, S.H. (2014). Reactive Oxygen and Nitrogen Species – A Driving Force in Amyotrophic Lateral Sclerosis. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_131

Download citation

Publish with us

Policies and ethics