Skip to main content

Advertisement

Log in

Research Advances in Amyotrophic Lateral Sclerosis, 2009 to 2010

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of upper and lower motor neurons that causes progressive weakness and death. The breadth of research in ALS continues to grow with exciting new discoveries in disease pathogenesis and potential future therapeutics. There is a growing list of identified mutations in familial ALS, including those in genes encoding TDP-43 and FUS/TLS, which are expanding our understanding of the role of RNA modulation in ALS pathogenesis. There is a greater appreciation for the role of glial cells in motor neuron disease. Mitochondrial dysfunction is also being shown to be critical for motor neuron degeneration. In addition to pharmacotherapy, there are promising early developments with therapeutic implications in the areas of RNA interference, stem cell therapies, viral vector—mediated gene therapy, and immunotherapy. With greater understanding of ALS pathogenesis and exciting new therapeutic technologies, there is hope for future progress in treating this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rosen DR, Siddique T, Patterson D, et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362:59–62.

    Article  CAS  PubMed  Google Scholar 

  2. Rothstein JD: Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009, 65 Suppl 1:S3–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ou SH, Wu F, Harrich D, et al.: Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 1995, 69:3584–96.

    CAS  PubMed  Google Scholar 

  4. Van Deerlin VM, Leverenz JB, Bekris LM, et al.: TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 2008, 7:409–16.

    Article  PubMed  CAS  Google Scholar 

  5. Arai T, Hasegawa M, Akiyama H, et al.: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351:602–11.

    Article  CAS  PubMed  Google Scholar 

  6. Neumann M, Sampathu DM, Kwong LK, et al.: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314:130–3.

    Article  CAS  PubMed  Google Scholar 

  7. • Kabashi E, Valdmanis PN, Dion P, et al.: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008, 40:572-4. This is an early paper that identified the role of TDP-43 mutations in familial and sporadic ALS.

  8. • Sreedharan J, Blair IP, Tripathi VB, et al.: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319:1668–72. This is an early paper that identified the role of TDP-43 mutations in familial and sporadic ALS.

  9. Yokoseki A, Shiga A, Tan CF, et al.: TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 2008, 63:538–42.

    Article  CAS  PubMed  Google Scholar 

  10. Gitcho MA, Baloh RH, Chakraverty S, et al.: TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 2008, 63:535–8.

    Article  CAS  PubMed  Google Scholar 

  11. Lagier-Tourenne C, Polymenidou M, Cleveland DW: TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010, 19:R46–64.

    Article  CAS  PubMed  Google Scholar 

  12. Iida A, Kamei T, Sano M, et al.: Large-scale screening of TARDBP mutation in amyotrophic lateral sclerosis in Japanese. Neurobiol Aging 2010.

  13. Sasaki S, Takeda T, Shibata N, Kobayashi M: Alterations in subcellular localization of TDP-43 immunoreactivity in the anterior horns in sporadic amyotrophic lateral sclerosis. Neurosci Lett 2010, 478:72–6.

    Article  CAS  PubMed  Google Scholar 

  14. Nishimura AL, Zupunski V, Troakes C, et al.: Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 2010, 133:1763–71.

    Article  PubMed  Google Scholar 

  15. Wegorzewska I, Bell S, Cairns NJ, et al.: TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 2009,

  16. Zhou H, Huang C, Chen H, et al.: Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet. 2010 March; 6(3): e1000887.

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki M, Mikami H, Watanabe T, et al.: Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand 2010.

  18. Fujii R, Takumi T: TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 2005, 118:5755–65.

    Article  CAS  PubMed  Google Scholar 

  19. Lerga A, Hallier M, Delva L, et al.: Identification of an RNA binding specificity for the potential splicing factor TLS. J Biol Chem 2001, 276:6807–16.

    Article  CAS  PubMed  Google Scholar 

  20. Zinszner H, Sok J, Immanuel D, et al.: TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci 1997, 110 ( Pt 15):1741–50.

    CAS  PubMed  Google Scholar 

  21. Ichikawa H, Shimizu K, Katsu R, Ohki M: Dual transforming activities of the FUS (TLS)-ERG leukemia fusion protein conferred by two N-terminal domains of FUS (TLS). Mol Cell Biol 1999, 19:7639–50.

    CAS  PubMed  Google Scholar 

  22. Prasad DD, Ouchida M, Lee L, et al.: TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene 1994, 9:3717–29.

    CAS  PubMed  Google Scholar 

  23. • Kwiatkowski TJ, Jr., Bosco DA, Leclerc AL, et al.: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323:1205–8. One of the first papers to identify FUS/TLS mutations in familial ALS.

    Google Scholar 

  24. • Vance C, Rogelj B, Hortobagyi T, et al.: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323:1208–11. One of the first papers to identify FUS/TLS mutations in familial ALS.

    Google Scholar 

  25. Blair IP, Williams KL, Warraich ST, et al.: FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J Neurol Neurosurg Psychiatry 2010, 81:639–45.

    Article  PubMed  Google Scholar 

  26. Chio A, Restagno G, Brunetti M, et al.: Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol Aging 2009, 30:1272–5.

    Article  CAS  PubMed  Google Scholar 

  27. • Corrado L, Del Bo R, Castellotti B, et al.: Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. J Med Genet 2010, 47:190–4. This is a particularly notable recent study investigating the occurrence, clinical characteristics, and pathology of FUS/TLS mutations in familial and sporadic ALS.

  28. Drepper C, Herrmann T, Wessig C, et al.: C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging 2009.

  29. Groen EJ, van Es MA, van Vught PW, et al.: FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. Arch Neurol 2010, 67:224–30.

    Article  PubMed  Google Scholar 

  30. • Hewitt C, Kirby J, Highley JR, et al.: Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 2010, 67:455–61. This is a particularly notable recent study investigating the occurrence, clinical characteristics, and pathology of FUS/TLS mutations in familial and sporadic ALS.

  31. Lai SL, Abramzon Y, Schymick JC, et al.: FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2010.

  32. Rademakers R, Stewart H, Dejesus-Hernandez M, et al.: Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve 2010.

  33. Ticozzi N, Silani V, LeClerc AL, et al.: Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort. Neurology 2009, 73:1180–5.

    Article  CAS  PubMed  Google Scholar 

  34. Belzil VV, Valdmanis PN, Dion PA, et al.: Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology 2009, 73:1176–9.

    Article  CAS  PubMed  Google Scholar 

  35. Waibel S, Neumann M, Rabe M, et al.: Novel missense and truncating mutations in FUS/TLS in familial ALS. Neurology 2010.

  36. Yan J, Deng HX, Siddique N, et al.: Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 2010.

  37. • Baumer D, Hilton D, Paine SM, et al.: Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 2010, 75(7):611–8. This paper brings a known subtype of juvenile ALS under the spectrum of disease associated with FUS mutations.

  38. Nishimura AL, Mitne-Neto M, Silva HC, et al.: A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004, 75:822–31.

    Article  CAS  PubMed  Google Scholar 

  39. Hadano S, Hand CK, Osuga H, et al.: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001, 29:166–73.

    Article  CAS  PubMed  Google Scholar 

  40. Chen YZ, Bennett CL, Huynh HM, et al.: DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004, 74:1128–35.

    Article  CAS  PubMed  Google Scholar 

  41. Chow CY, Landers JE, Bergren SK, et al.: Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 2009, 84:85–8.

    Article  CAS  PubMed  Google Scholar 

  42. Greenway MJ, Andersen PM, Russ C, et al.: ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 2006, 38:411–3.

    Article  CAS  PubMed  Google Scholar 

  43. Maruyama H, Morino H, Ito H, et al.: Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465:223–6.

    Article  CAS  PubMed  Google Scholar 

  44. Orlacchio A, Babalini C, Borreca A, et al.: SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 2010, 133:591–8.

    Article  PubMed  Google Scholar 

  45. Mitchell J, Paul P, Chen HJ, et al.: Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc Natl Acad Sci U S A 2010, 107:7556–61.

    Article  CAS  PubMed  Google Scholar 

  46. Parkinson N, Ince PG, Smith MO, et al.: ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 2006, 67:1074–7.

    Article  CAS  PubMed  Google Scholar 

  47. Skibinski G, Parkinson NJ, Brown JM, et al.: Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 2005, 37:806–8.

    Article  CAS  PubMed  Google Scholar 

  48. Cox LE, Ferraiuolo L, Goodall EF, et al.: Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One 2010, 5:e9872.

    Article  PubMed  CAS  Google Scholar 

  49. Mackness MI, Arrol S, Durrington PN: Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 1991, 286:152–4.

    Article  CAS  PubMed  Google Scholar 

  50. • Ticozzi N, LeClerc AL, Keagle PJ, et al.: Paraoxonase gene mutations in amyotrophic lateral sclerosis. Ann Neurol 2010, 68:102–7. In this study, gene mutations are identified in three paraoxonase (PON) genes in patients with familial and ALS, further strengthening the association of PON with ALS pathogenesis and suggesting a new genetic cause of motor neuron disease.

  51. Greenberg DA, Stewart WC, Rowland LP: Paraoxonase genes and susceptibility to ALS. Neurology 2009, 73:11–2.

    Article  PubMed  Google Scholar 

  52. Wills AM, Cronin S, Slowik A, et al.: A large-scale international meta-analysis of paraoxonase gene polymorphisms in sporadic ALS. Neurology 2009, 73:16–24.

    Article  CAS  PubMed  Google Scholar 

  53. Strong MJ: The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci 2010, 288:1–12.

    Article  CAS  PubMed  Google Scholar 

  54. Gregory RI, Yan KP, Amuthan G, et al.: The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432:235–40.

    Article  CAS  PubMed  Google Scholar 

  55. Williams AH, Valdez G, Moresi V, et al.: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009, 326:1549–54.

    Article  CAS  PubMed  Google Scholar 

  56. Haramati S, Chapnik E, Sztainberg Y, et al.: miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 2010.

  57. Bruijn LI, Houseweart MK, Kato S, et al.: Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 1998, 281:1851–4.

    Article  CAS  PubMed  Google Scholar 

  58. Jaarsma D, Haasdijk ED, Grashorn JA, et al.: Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 2000, 7:623–43.

    Article  CAS  PubMed  Google Scholar 

  59. Reaume AG, Elliott JL, Hoffman EK, et al.: Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996, 13:43–7.

    Article  CAS  PubMed  Google Scholar 

  60. Lino MM, Schneider C, Caroni P: Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci 2002, 22:4825–32.

    CAS  PubMed  Google Scholar 

  61. Pramatarova A, Laganiere J, Roussel J, et al.: Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci 2001, 21:3369–74.

    CAS  PubMed  Google Scholar 

  62. Clement AM, Nguyen MD, Roberts EA, et al.: Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003, 302:113–7.

    Article  CAS  PubMed  Google Scholar 

  63. • Di Giorgio FP, Carrasco MA, Siao MC, et al.: Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 2007, 10:608–14. This paper demonstrates that the neurodegenerative effect of SOD1 mutations are non-neuronal and depend on glial cells.

  64. • Nagai M, Re DB, Nagata T, et al.: Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007, 10:615–22. This paper demonstrates that the neurodegenerative effect of SOD1 mutations are non-neuronal and depend on glial cells.

  65. Yamanaka K, Boillee S, Roberts EA, et al.: Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A 2008, 105:7594–9.

    Article  CAS  PubMed  Google Scholar 

  66. Lobsiger CS, Boillee S, McAlonis-Downes M, et al.: Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci U S A 2009, 106:4465–70.

    Article  CAS  PubMed  Google Scholar 

  67. Orrell RW, Schapira AH: Mitochondria and amyotrophic lateral sclerosis. Int Rev Neurobiol 2002, 53:411–26.

    Article  CAS  PubMed  Google Scholar 

  68. Huang EJ, Zhang J, Geser F, et al.: Extensive FUS-Immunoreactive Pathology in Juvenile Amyotrophic Lateral Sclerosis with Basophilic Inclusions. Brain Pathol 2010.

  69. Zhou J, Yi J, Fu R, et al.: Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem 2010, 285:705–12.

    Article  CAS  PubMed  Google Scholar 

  70. Perlson E, Maday S, Fu MM, et al.: Retrograde axonal transport: pathways to cell death? Trends Neurosci 2010, 33:335–44.

    Article  CAS  PubMed  Google Scholar 

  71. Pedrini S, Sau D, Guareschi S, et al.: ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2. Hum Mol Genet 2010, 19:2974–86.

    Article  CAS  PubMed  Google Scholar 

  72. Chen K, Northington FJ, Martin LJ: Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice. Brain Struct Funct 2010, 214:219–34.

    Article  CAS  PubMed  Google Scholar 

  73. Martin LJ, Gertz B, Pan Y, et al.: The mitochondrial permeability transition pore in motor neurons: involvement in the pathobiology of ALS mice. Exp Neurol 2009, 218:333–46.

    Article  CAS  PubMed  Google Scholar 

  74. Crugnola V, Lamperti C, Lucchini V, et al.: Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Arch Neurol 2010, 67:849–54.

    Article  PubMed  Google Scholar 

  75. Hirano M, Angelini C, Montagna P, et al.: Amyotrophic lateral sclerosis with ragged-red fibers. Arch Neurol 2008, 65:403–6.

    Article  PubMed  Google Scholar 

  76. Bensimon G, Lacomblez L, Meininger V: A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 1994, 330:585–91.

    Article  CAS  PubMed  Google Scholar 

  77. Lacomblez L, Bensimon G, Leigh PN, et al.: A confirmatory dose-ranging study of riluzole in ALS. ALS/Riluzole Study Group-II. Neurology 1996, 47:S242–50.

    CAS  PubMed  Google Scholar 

  78. Miller RG, Mitchell JD, Lyon M, Moore DH: Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 2007:CD001447.

  79. Aggarwal SP, Zinman L, Simpson E, et al.: Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010, 9:481–8.

    Article  CAS  PubMed  Google Scholar 

  80. Piepers S, Veldink JH, de Jong SW, et al.: Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis. Ann Neurol 2009, 66:227–34.

    Article  CAS  PubMed  Google Scholar 

  81. Kaufmann P, Thompson JL, Levy G, et al.: Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol 2009, 66:235–44.

    Article  CAS  PubMed  Google Scholar 

  82. Mello CC, Conte D, Jr.: Revealing the world of RNA interference. Nature 2004, 431:338–42.

    Article  CAS  PubMed  Google Scholar 

  83. Ralph GS, Radcliffe PA, Day DM, et al.: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005, 11:429–33.

    Article  CAS  PubMed  Google Scholar 

  84. Raoul C, Abbas-Terki T, Bensadoun JC, et al.: Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 2005, 11:423–8.

    Article  CAS  PubMed  Google Scholar 

  85. Saito Y, Yokota T, Mitani T, et al.: Transgenic small interfering RNA halts amyotrophic lateral sclerosis in a mouse model. J Biol Chem 2005, 280:42826–30.

    Article  CAS  PubMed  Google Scholar 

  86. Locatelli F, Corti S, Papadimitriou D, et al.: Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice. Ann Neurol 2007, 62:81–92.

    Article  CAS  PubMed  Google Scholar 

  87. Miller TM, Kaspar BK, Kops GJ, et al.: Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 2005, 57:773–6.

    Article  CAS  PubMed  Google Scholar 

  88. Towne C, Raoul C, Schneider BL, Aebischer P: Systemic AAV6 delivery mediating RNA interference against SOD1: neuromuscular transduction does not alter disease progression in fALS mice. Mol Ther 2008, 16:1018–25.

    Article  CAS  PubMed  Google Scholar 

  89. Wang H, Ghosh A, Baigude H, et al.: Therapeutic gene silencing delivered by a chemically modified small interfering RNA against mutant SOD1 slows amyotrophic lateral sclerosis progression. J Biol Chem 2008, 283:15845–52.

    Article  CAS  PubMed  Google Scholar 

  90. Rizvanov AA, Mukhamedyarov MA, Palotas A, Islamov RR: Retrogradely transported siRNA silences human mutant SOD1 in spinal cord motor neurons. Exp Brain Res 2009, 195:1–4.

    Article  CAS  PubMed  Google Scholar 

  91. Wu R, Wang H, Xia X, et al.: Nerve injection of viral vectors efficiently transfers transgenes into motor neurons and delivers RNAi therapy against ALS. Antioxid Redox Signal 2009, 11:1523–34.

    Article  CAS  PubMed  Google Scholar 

  92. Harper SQ: Progress and challenges in RNA interference therapy for Huntington disease. Arch Neurol 2009, 66:933–8.

    Article  PubMed  Google Scholar 

  93. Vercelli A, Mereuta OM, Garbossa D, et al.: Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008, 31:395–405.

    Article  CAS  PubMed  Google Scholar 

  94. Mazzini L, Mareschi K, Ferrero I, et al.: Stem cell treatment in Amyotrophic Lateral Sclerosis. J Neurol Sci 2008, 265:78–83.

    Article  CAS  PubMed  Google Scholar 

  95. Kim H, Kim HY, Choi MR, et al.: Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett 2010, 468:190–4.

    Article  CAS  PubMed  Google Scholar 

  96. Boucherie C, Schafer S, Lavand’homme P, et al.: Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 2009, 87:2034–46.

    Article  CAS  PubMed  Google Scholar 

  97. Mazzini L, Ferrero I, Luparello V, et al.: Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Exp Neurol 2010, 223:229–37.

    Article  CAS  PubMed  Google Scholar 

  98. Deda H, Inci MC, Kurekci AE, et al.: Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 2009, 11:18–25.

    Article  CAS  PubMed  Google Scholar 

  99. Beers DR, Henkel JS, Xiao Q, et al.: Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006, 103:16021–6.

    Article  CAS  PubMed  Google Scholar 

  100. Corti S, Locatelli F, Donadoni C, et al.: Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 2004, 127:2518–32.

    Article  PubMed  Google Scholar 

  101. Ohnishi S, Ito H, Suzuki Y, et al.: Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis. Brain Res 2009, 1296:216–24.

    Article  CAS  PubMed  Google Scholar 

  102. Corti S, Nizzardo M, Nardini M, et al.: Systemic transplantation of c-kit + cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 2010, 19(19):3782–96.

    Article  CAS  PubMed  Google Scholar 

  103. • Appel SH, Engelhardt JI, Henkel JS, et al.: Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology 2008, 71:1326–34. This study showed that hematopoietic stem cells can engraft in the human CNS, but that in this small study there was no clinical benefit.

  104. Corti S, Locatelli F, Papadimitriou D, et al.: Neural stem cells LewisX + CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain 2007, 130:1289–305.

    Article  PubMed  Google Scholar 

  105. Xu L, Yan J, Chen D, et al.: Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006, 82:865–75.

    Article  PubMed  Google Scholar 

  106. Xu L, Ryugo DK, Pongstaporn T, et al.: Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 2009, 514:297–309.

    Article  CAS  PubMed  Google Scholar 

  107. Lowry WE, Richter L, Yachechko R, et al.: Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 2008, 105:2883–8.

    Article  CAS  PubMed  Google Scholar 

  108. Park IH, Zhao R, West JA, et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451:141–6.

    Article  CAS  PubMed  Google Scholar 

  109. Takahashi K, Tanabe K, Ohnuki M, et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861–72.

    Article  CAS  PubMed  Google Scholar 

  110. Yu J, Vodyanik MA, Smuga-Otto K, et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  111. Lee H, Shamy GA, Elkabetz Y, et al.: Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 2007, 25:1931–9.

    Article  CAS  PubMed  Google Scholar 

  112. • Dimos JT, Rodolfa KT, Niakan KK, et al.: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008, 321:1218–21. In this study, iPSCs were generated from a patient with ALS and were directed to differentiate into motor neurons. This is an early use of iPSCs in ALS.

  113. Ebert AD, Yu J, Rose FF, Jr., et al.: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009, 457:277–80.

    Article  CAS  PubMed  Google Scholar 

  114. Karumbayaram S, Novitch BG, Patterson M, et al.: Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 2009, 27:806–11.

    Article  CAS  PubMed  Google Scholar 

  115. Passini MA, Bu J, Roskelley EM, et al.: CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010, 120:1253–64.

    Article  CAS  PubMed  Google Scholar 

  116. Urushitani M, Ezzi SA, Julien JP: Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2007, 104:2495–500.

    Article  CAS  PubMed  Google Scholar 

  117. Gros-Louis F, Soucy G, Lariviere R, Julien JP: Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J Neurochem 2010, 113:1188–99.

    CAS  PubMed  Google Scholar 

  118. Orgogozo JM, Gilman S, Dartigues JF, et al.: Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003, 61:46–54.

    CAS  PubMed  Google Scholar 

  119. Pascuzzi RM, Shefner J, Chappell AS, et al.: A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010, 11:266–71.

    Article  CAS  PubMed  Google Scholar 

  120. Nefussy B, Artamonov I, Deutsch V, et al.: Recombinant human granulocyte-colony stimulating factor administration for treating amyotrophic lateral sclerosis: A pilot study. Amyotroph Lateral Scler 2010, 11:187–93.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, Wang L, Fu Y, et al.: Preliminary investigation of effect of granulocyte colony stimulating factor on amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009, 10:430–1.

    Article  CAS  PubMed  Google Scholar 

  122. Brooks BR, Thisted RA, Appel SH, et al.: Treatment of pseudobulbar affect in ALS with dextromethorphan/quinidine: a randomized trial. Neurology 2004, 63:1364–70.

    CAS  PubMed  Google Scholar 

  123. Rabkin JG, Gordon PH, McElhiney M, et al.: Modafinil treatment of fatigue in patients with ALS: a placebo-controlled study. Muscle Nerve 2009, 39:297–303.

    Article  CAS  PubMed  Google Scholar 

  124. Gilio F, Iacovelli E, Frasca V, et al.: Botulinum toxin type A for the treatment of sialorrhoea in amyotrophic lateral sclerosis: a clinical and neurophysiological study. Amyotroph Lateral Scler 2010, 11:359–63.

    Article  CAS  PubMed  Google Scholar 

  125. Ravits JM, La Spada AR: ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 2009, 73:805–11.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

R. Traub: none; H. Mitsumoto: has received honoraria from Sanofi-Aventis, and has grants pending with Avanir, Knopp, and Teva (clinical trials); L.P. Rowland: has received honoraria from lectures, and receives royalties from Merritt's Neurology and for The Legacy of Tracy J. Putnam and H. Houston Merritt. He was paid as the Founding Editor of Neurology Today and as Editor in Chief of Neurology Today (from the American Academy of Neurology) from 2000 to 2009. He volunteers as President of Parkinson’s Disease Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Traub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traub, R., Mitsumoto, H. & Rowland, L.P. Research Advances in Amyotrophic Lateral Sclerosis, 2009 to 2010. Curr Neurol Neurosci Rep 11, 67–77 (2011). https://doi.org/10.1007/s11910-010-0160-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-010-0160-0

Keywords

Navigation