Skip to main content

Oxidative Stress and Ion Channels

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

The gating properties of ion channels can be significantly altered by the intracellular redox status. Reactive oxygen (ROS) and nitrogen (RNS) species induce posttranslational modifications targeted at specific residues within the pore-forming subunits. These include redox modification of sulfhydryl groups of cysteine residues by ROS, s-nitrosylation by nitric oxide, and/or nitration of tyrosine residues by peroxynitrite. The functional activity of a number of ion channels has been examined directly in response to oxidizing agents or following oxidative stress. This chapter summarizes some of the known changes in channel regulation by ROS/RNS both from a biophysical standpoint and in disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarali HI, Hawkins EG, Ross GR, Kang M (2010) Ion channel remodeling in gastrointestinal inflammation. Neurogastroenterol Motil 22(10):1045–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Annunziato L, Pannaccione A, Cataldi M, Secondo A, Castaldo P, Di Renzo G et al (2002) Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 23(5):819–834

    Article  CAS  PubMed  Google Scholar 

  • Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42(2):543–549

    Article  CAS  PubMed  Google Scholar 

  • Barry DM, Nerbonne JM (1996) Myocardial potassium channels: electrophysiological and molecular diversity. Annu Rev Physiol 58:363–394

    Article  CAS  PubMed  Google Scholar 

  • Bogeski I, Kummerow C, Al-Ansary D, Schwarz EC, Koehler R, Kozai D et al (2010) Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci Signal 3(115):ra24

    Article  PubMed  Google Scholar 

  • Bogeski I, Kappl R, Kummerow C, Gulaboski R, Hoth M, Niemeyer BA (2011) Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium 50(5):407–423

    Article  CAS  PubMed  Google Scholar 

  • Caiafa P, Guastafierro T, Zampieri M (2009) Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns. FASEB J 23(3):672–678

    Article  CAS  PubMed  Google Scholar 

  • Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108(4):277–293

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Thebault S, van der Wijst J, van der Kemp A, Lasonder E, Bindels RJ et al (2008) RACK1 inhibits TRPM6 activity via phosphorylation of the fused alpha-kinase domain. Curr Biol 18(3):168–176

    Article  CAS  PubMed  Google Scholar 

  • Cao G, van der Wijst J, van der Kemp A, van Zeeland F, Bindels RJ, Hoenderop JG (2009) Regulation of the epithelial Mg2+ channel TRPM6 by estrogen and the associated repressor protein of estrogen receptor activity (REA). J Biol Chem 284(22):14788–14795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sroubek J, Krishnan Y, Li Y, Bian J, McDonald TV (2009) PKA phosphorylation of HERG protein regulates the rate of channel synthesis. Am J Physiol Heart Circ Physiol 296(5):H1244–H1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang HH, Lin S (2009) Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci USA 106(47):20097–20102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cioffi DL (2011) Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal 15(6):1567–1582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Coddou C, Codocedo JF, Li S, Lillo JG, Acuna-Castillo C, Bull P et al (2009) Reactive oxygen species potentiate the P2X2 receptor activity through intracellular Cys430. J Neurosci 29(39):12284–12291

    Article  CAS  PubMed  Google Scholar 

  • Coombes E, Jiang J, Chu XP, Inoue K, Seeds J, Branigan D et al (2011) Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid Redox Signal 14(10):1815–1827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crouzin N, Ferreira MC, Cohen-Solal C, Barbanel G, Guiramand J, Vignes M (2010) Neuroprotection induced by vitamin E against oxidative stress in hippocampal neurons: involvement of TRPV1 channels. Mol Nutr Food Res 54(4):496–505

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Fan Z (2002) Mechanism of Kir6.2 channel inhibition by sulfhydryl modification: pore block or allosteric gating? J Physiol 540(Pt 3):731–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34(2):85–96

    Article  CAS  PubMed  Google Scholar 

  • Deisseroth K, Heist EK, Tsien RW (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392(6672):198–202

    Article  CAS  PubMed  Google Scholar 

  • DiChiara TJ, Reinhart PH (1997) Redox modulation of hslo Ca2+−activated K+ channels. J Neurosci 17(13):4942–4955

    CAS  PubMed  Google Scholar 

  • Erdos B, Simandle SA, Snipes JA, Miller AW, Busija DW (2004) Potassium channel dysfunction in cerebral arteries of insulin-resistant rats is mediated by reactive oxygen species. Stroke 35(4):964–969

    Article  PubMed  Google Scholar 

  • Esposito E, Cuzzocrea S (2009) Superoxide, NO, peroxynitrite and PARP in circulatory shock and inflammation. Front Biosci 14:263–296

    Article  CAS  Google Scholar 

  • Evans JR, Bielefeldt K (2000) Regulation of sodium currents through oxidation and reduction of thiol residues. Neuroscience 101(1):229–236

    Article  CAS  PubMed  Google Scholar 

  • Fauzee NJ, Pan J, Wang YL (2010) PARP and PARG inhibitors – new therapeutic targets in cancer treatment. Pathol Oncol Res 16(4):469–478

    Article  CAS  PubMed  Google Scholar 

  • Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2(6):439–447

    Article  CAS  PubMed  Google Scholar 

  • Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25(12):633–639

    Article  CAS  PubMed  Google Scholar 

  • Gade AR, Kang M, Akbarali HI (2013) Hydrogen sulfide as an allosteric modulator of ATP-sensitive potassium channels in colonic inflammation. Mol Pharmacol 83(1):294–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groschner K, Rosker C, Lukas M (2004) Role of TRP channels in oxidative stress. Novartis Found Symp 258:222–230, discussion 231–225, 263–226

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T et al (2002) LTRPC2 Ca2+−permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173

    Article  CAS  PubMed  Google Scholar 

  • Hool LC (2009) The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state. Heart Lung Circ 18(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Wu L, Wang R (2007) Sulphonylureas induced vasorelaxation of mouse arteries. Eur J Pharmacol 577(1–3):124–128

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Malykhina AP, Lupu F, Akbarali HI (2004) Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis. Am J Physiol Gastrointest Liver Physiol 287(1):G274–G285

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Akbarali HI (2008) Denitration of L-type calcium channel. FEBS Lett 582(20):3033–3036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang M, Morsy N, Jin X, Lupu F, Akbarali HI (2004) Protein and gene expression of Ca2+ channel isoforms in murine colon: effect of inflammation. Pflugers Arch 449(3):288–297

    CAS  PubMed  Google Scholar 

  • Kang M, Ross GR, Akbarali HI (2007) COOH-terminal association of human smooth muscle calcium channel Ca(v)1.2b with Src kinase protein binding domains: effect of nitrotyrosylation. Am J Physiol Cell Physiol 293(6):C1983–C1990

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Ross GR, Akbarali HI (2010) The effect of tyrosine nitration of L-type Ca2+ channels on excitation-transcription coupling in colonic inflammation. Br J Pharmacol 159(6):1226–1235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karmazinova M, Beyl S, Stary-Weinzinger A, Suwattanasophon C, Klugbauer N, Hering S et al (2010) Cysteines in the loop between IS5 and the pore helix of Ca(V)3.1 are essential for channel gating. Pflugers Arch 460(6):1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Zoga V, Kimura M, Liang MY, Wu HE, Gemes G et al (2009) Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain 5:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolbe K, Schonherr R, Gessner G, Sahoo N, Hoshi T, Heinemann SH (2010) Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels. J Physiol 588(Pt 16):2999–3009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Krippeit-Drews P, Kramer C, Welker S, Lang F, Ammon HP, Drews G (1999) Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol 514(Pt 2):471–481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulkarni AC, Kuppusamy P, Parinandi N (2007) Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 9(10):1717–1730

    Article  CAS  PubMed  Google Scholar 

  • Li A, Segui J, Heinemann SH, Hoshi T (1998a) Oxidation regulates cloned neuronal voltage-dependent Ca2+ channels expressed in Xenopus oocytes. J Neurosci 18(17):6740–6747

    CAS  PubMed  Google Scholar 

  • Li Z, Chapleau MW, Bates JN, Bielefeldt K, Lee HC, Abboud FM (1998b) Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron 20(5):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Bourke S, Kemp PJ (2004) Selective modulation of ligand-gated P2X purinoceptor channels by acute hypoxia is mediated by reactive oxygen species. Mol Pharmacol 66(6):1525–1535

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Seino S (2005) Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol 38(6):917–925

    Article  CAS  PubMed  Google Scholar 

  • Mistry DK, Garland CJ (1998) Nitric oxide (NO)-induced activation of large conductance Ca2+−dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124(6):1131–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miura H, Wachtel RE, Loberiza FR Jr, Saito T, Miura M, Nicolosi AC et al (2003) Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels. Circ Res 92(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121(1):49–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakajima T, Davies SS, Matafonova E, Potet F, Amarnath V, Tallman KA et al (2010) Selective gamma-ketoaldehyde scavengers protect Nav1.5 from oxidant-induced inactivation. J Mol Cell Cardiol 48(2):352–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama S, Ito Y, Sato S, Kamijo A, Liu HN, Kajioka S (2006) Tyrosine kinase inhibitors and ATP modulate the conversion of smooth muscle L-type Ca2+ channels toward a second open state. FASEB J 20(9):1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440(7083):470–476

    Article  CAS  PubMed  Google Scholar 

  • Orestes P, Bojadzic D, Lee J, Leach E, Salajegheh R, Digruccio MR et al (2011) Free radical signalling underlies inhibition of CaV3.2 T-type calcium channels by nitrous oxide in the pain pathway. J Physiol 589(Pt 1):135–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Article  CAS  PubMed  Google Scholar 

  • Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (2002) Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc Natl Acad Sci USA 99(12):7986–7991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan Y, Weng J, Cao Y, Bhosle RC, Zhou M (2008) Functional coupling between the Kv1.1 channel and aldoketoreductase Kvbeta1. J Biol Chem 283(13):8634–8642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peri R, Wible BA, Brown AM (2001) Mutations in the Kv beta 2 binding site for NADPH and their effects on Kv1.4. J Biol Chem 276(1):738–741

    Article  CAS  PubMed  Google Scholar 

  • Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C et al (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280(7):6138–6148

    Article  CAS  PubMed  Google Scholar 

  • Pongs O (1992) Molecular biology of voltage-dependent potassium channels. Physiol Rev 72(4 Suppl):S69–S88

    CAS  PubMed  Google Scholar 

  • Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H et al (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Matthews JB, He XD, Akbarali HI (1999) Monochloramine directly modulates Ca(2+)-activated K(+) channels in rabbit colonic muscularis mucosae. Gastroenterology 117(4):906–917

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Roberts-Thomson SJ, Peters AA, Grice DM, Monteith GR (2010) ORAI-mediated calcium entry: mechanism and roles, diseases and pharmacology. Pharmacol Ther 127(2):121–130

    Article  CAS  PubMed  Google Scholar 

  • Ross GR, Kang M, Shirwany N, Malykhina AP, Drozd M, Akbarali HI (2007) Nitrotyrosylation of Ca2+ channels prevents c-Src kinase regulation of colonic smooth muscle contractility in experimental colitis. J Pharmacol Exp Ther 322(3):948–956

    Article  CAS  PubMed  Google Scholar 

  • Ross GR, Kang M, Akbarali HI (2010) Colonic inflammation alters Src kinase-dependent gating properties of single Ca2+ channels via tyrosine nitration. Am J Physiol Gastrointest Liver Physiol 298(6):G976–G984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291(5506):1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279(5):3708–3716

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440(7083):463–469

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2):299–307

    Article  CAS  PubMed  Google Scholar 

  • Schilling T, Eder C (2009) Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J Neuroimmunol 216(1–2):118–121

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218

    Article  CAS  PubMed  Google Scholar 

  • Tang XD, Daggett H, Hanner M, Garcia ML, McManus OB, Brot N et al (2001) Oxidative regulation of large conductance calcium-activated potassium channels. J Gen Physiol 117(3):253–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C et al (2001) Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31(1):75–85

    Article  CAS  PubMed  Google Scholar 

  • Tokube K, Kiyosue T, Arita M (1998) Effects of hydroxyl radicals on KATP channels in guinea-pig ventricular myocytes. Pflugers Arch 437(1):155–157

    Article  CAS  PubMed  Google Scholar 

  • Trapp S, Tucker SJ, Ashcroft FM (1998) Mechanism of ATP-sensitive K channel inhibition by sulfhydryl modification. J Gen Physiol 112(3):325–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269(5220):92–95

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JI (2010) Oxidative stress fine-tunes the dance of hERG K+ channels. J Physiol 588(Pt 16):2975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell Biol 183(5):849–863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie Z, Barski OA, Cai J, Bhatnagar A, Tipparaju SM (2011) Catalytic reduction of carbonyl groups in oxidized PAPC by Kvbeta2 (AKR6). Chem Biol Interact 191(1–3):255–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Takahashi N, Mori Y (2010) Chemical physiology of oxidative stress-activated TRPM2 and TRPC5 channels. Prog Biophys Mol Biol 103(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shi W, Chen X, Cui N, Konduru AS, Shi Y et al (2011) Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J Biol Chem 286(11):9298–9307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoshiki H, Sunagawa M, Seki T, Sperelakis N (1998) ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol 274(1 Pt 1):C25–C37

    CAS  PubMed  Google Scholar 

  • Zhang Y, Xiao J, Wang H, Luo X, Wang J, Villeneuve LR et al (2006) Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am J Physiol Heart Circ Physiol 291(3):H1446–H1455

    Article  CAS  PubMed  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) DK046367 and NIHDA024009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid I. Akbarali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Akbarali, H.I. (2014). Oxidative Stress and Ion Channels. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_12

Download citation

Publish with us

Policies and ethics