Skip to main content

Advertisement

Log in

PARP and PARG Inhibitors—New Therapeutic Targets in Cancer Treatment

  • Published:
Pathology & Oncology Research

Abstract

Today, the number of cancer patients throughout the world is increasing alarmingly and as per the World Health Organisation (WHO) data and statistics the prediction for the year 2020 will be 15 million new cases as compared to only 10 million cases in year 2000 leaving us dumbfounded. A lot of effort has been put in by researchers and scientists over decades to find drugs helpful in the treatment of cancers for the benefit of patients—The latest being the Poly ADP-ribose polymerase (PARP) and the Poly ADP-ribose glycohydrolase (PARG) inhibitors. This review highlights their mechanism of action under the rationale of their use and current development in the field of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PARP:

Poly ADP ribose polymerase

PARG:

Poly ADP-ribose glycohydrolase

References

  1. D’amours D, Desnoyers S, D’silva I, Poirier GG (1999) Poly (ADP-ribosyl)ation reactions in the regulation of nuclear functions. J Biochem 342:249–268

    Article  Google Scholar 

  2. Parise RA, Shawaqfeh M, Egorin MJ, Beumer JH (2008) Liquid chromatography-mass spactometric assay for quantitation in human plasma of ABT-888, an orally available, small molecule inhibitor of poly (ADP-ribose) polymerase. J Chromatogr B Analyt Technol Biomed Life Sci 872(1–2):141–147

    PubMed  CAS  Google Scholar 

  3. Hochegger H, Dejsuphong D, Fukushima T, Morrison C et al (2006) Parp-1 protects homologous recombination from interferenve by Ku and Ligase IV in vertebrate cells. EMBO J 25:1305–1314

    Article  PubMed  CAS  Google Scholar 

  4. Virag L, Szabo C (2002) The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  PubMed  CAS  Google Scholar 

  5. Meyer RG, Meyer-Ficca ML, Jacobson EL, Jacobson MK (2003) Human poly (ADP-ribose) glycohydrolase (PARG) gene and the common promoter sequence it shares with inner mitochondrial membrane translocase 23 (TIM23). Gene 314:181–190

    Article  PubMed  CAS  Google Scholar 

  6. Koh DW, Lawler AM, Poitras MF et al (2004) Failure to degrade poly (ADP-ribose) increased sensitivity to cytotoxicity and early embryonic lethality. PNAS 101(51):17699–17704

    Article  PubMed  CAS  Google Scholar 

  7. Cortes U, Tong WM, Coyle DL et al (2004) Depletion of the 110-Kilodalton isoform of poly (ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. MCB 24(16):7163–7178

    Article  PubMed  CAS  Google Scholar 

  8. Poitras MF, Koh DW, Yu SW et al (2007) Spatial and functional relationship between poly (ADP-ribose) polymerase-1 and Poly (ADP-ribose) glycohydrolase in the brain. Neuroscience 148(1):198–211

    Article  PubMed  CAS  Google Scholar 

  9. Miwa M, Matsutani (2007) PolyADP-ribosylation and cancer. Cancer Sci 98(10):1528–1535

    Article  PubMed  CAS  Google Scholar 

  10. Blenn C, Althaus FR, Manlanga M (2006) Poly (ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death. J Biochem 396:419–429

    Article  CAS  Google Scholar 

  11. Ratnam K, Low JA (2007) Current development of clinical poly (ADP-ribose) inhibitor in oncology. Clin Cancer Res 13(5):1383–1388

    Article  PubMed  CAS  Google Scholar 

  12. Decker P, Miranda EA, De Murcia G, Muller S (1999) An improved nonisotopic test to screen a large series of new inhibitor molecules of poly (ADP-ribose) polymerase activity for therapeutic applications. Clin Cancer Res 5:1169–1172

    PubMed  CAS  Google Scholar 

  13. Cuzzocrea S, Paola RD, Mazzon E et al (2005) PARG activity mediates intestinal injury induced by splanchnic artery occlusion and reperfusion. FASEB J 19:558–566

    Article  PubMed  CAS  Google Scholar 

  14. Plummer R, Jones C, Middleton M et al (2008) Phase I study of the poly (ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced Solid Tumors. Clin Cancer Res 14(23):7917–7923

    Article  PubMed  CAS  Google Scholar 

  15. Valenzuela MT, Guerrerro R, Nunez MI et al (2002) PARP-1 modifies the effectiveness of P53 mediated DNA damage response. Oncogene 21(7):1108–1116

    Article  PubMed  CAS  Google Scholar 

  16. Oei SL, Ziegler M (2000) ATP for the DNA ligation step in base excision repair is generated from poly (ADP-ribose). J Biol Chem 275:23234–23239

    PubMed  CAS  Google Scholar 

  17. McCabe N, Turner NC, Lord CJ et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly (ADP-ribose) polymerase inhibition. Cancer Res 66(16):8109–8115

    Article  PubMed  CAS  Google Scholar 

  18. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  19. Kumari SR, Mendoza-Alvarez H, Alvarez-Gonzalez R (1998) Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage: covalent poly(ADP-ribosyl)ation of p53by exogenous PARP and noncovalent binding of p53 to the Mr 85,000 proteolytic fragment1. Cancer Res 58:5075–5078

    PubMed  CAS  Google Scholar 

  20. Affar EB, Germain M, Winstall E et al (2001) Caspase-3-mediated processing of poly (ADP-ribose) glycohydrolase during apoptosis. JBC 276(4):2935–2942

    Article  CAS  Google Scholar 

  21. Koh DW, Dawson TM, Dawson VL (2005) Mediation of cell death by Poly (ADP-ribose)-1. Pharmacol Res 52(1):5–14

    Article  PubMed  CAS  Google Scholar 

  22. Bhaskara, et al (2009) Differrential PARP cleavage: an indication for existence of multiple forms of cell death in human gilomas. Neurology India 57(3)

  23. Hung Q, Wu YT, Tan HL, Ong CN, Shen HM (2009) A novel function of PARP-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Diff 16:264–277

    Article  Google Scholar 

  24. Lee Y, Shacter E (1999) Oxidative stress inhibits apoptosis in human lymphoma cells. J Bio Chem 274:19792–19798

    Article  CAS  Google Scholar 

  25. Walisser JA, Thies RC (1999) Poly (ADP-ribose) polymerase inhibition in oxidant stressed endothelial cells prevents oncosis and permits caspase activation and apoptosis. Exp Cell Res 251(12):401–413

    Article  PubMed  CAS  Google Scholar 

  26. Mathews MT, Berk BC (2008) PARP-1 inhibition prevents oxidative and nitrosative stress–induced endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler Thromb Vasc Biol 28:711–717

    Article  PubMed  CAS  Google Scholar 

  27. Kovacs K, Toth A, Deres P et al (2006) Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia–reperfusion. Biochem Pharmacol 71(4):441–452

    Article  PubMed  CAS  Google Scholar 

  28. Klaidman L, Morales M, Kem S et al (2003) Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology 69(3):150–157

    Article  PubMed  CAS  Google Scholar 

  29. Filipovic DM, Meng X, Reeves WB (1999) Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells. Am J Physiol Renal Physiol 277:428–436

    Google Scholar 

  30. Roesner JP, Vagts DA, Iber T et al (2006) Protective effects of PARP inhibition on liver microcirculation and function after haemorrhagic shock and resuscitation in male rats. Intensive Care Med 32(10):1649–1657

    Article  PubMed  CAS  Google Scholar 

  31. Oku H, Goto W, Tsujimoto M et al (2003) Effects of Poly(ADP-ribose) polymerase (PARP) Inhibitor on NMDA-induced retinal injury. Invest Ophthalmol Vis Sci 44: E-Abstract 27

  32. Charron MJ, Bonner-Weir S (1999) Implicating PARP and NAD+ depletion in type I diabetes. Nat Med 5:269–270

    Article  PubMed  CAS  Google Scholar 

  33. Ha HC, Snyder SH (1999) Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. PNAS 96:13978–13982

    Article  PubMed  CAS  Google Scholar 

  34. Hanai S, Kanai M, Ohashi S et al (2004) Loss of poly (ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. PNAS 101(1):82–86

    Article  PubMed  CAS  Google Scholar 

  35. Keil C, Gröbe T, Oei SL (2006) MNNG-induced cell death is controlled by interactions between PARP-1, Poly (ADP-ribose) glycohydrolase, and XRCC1. J Biochem 281:34394–34405

    CAS  Google Scholar 

  36. Ménissier-de Murcia J, Mark M, Wendling O, Wynshaw-Boris A, de Murcia G (2001) Early embryonic lethality in PARP-1 Atm double-mutant mice suggests a functional synergy in cell proliferation during development. MCB 21(5):1828–1832

    Article  Google Scholar 

  37. Yang YG, Cortes U, Patnaik S, Jasin M, Wang Z (2004) Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23:3872–3882 [abstract]

    Article  PubMed  CAS  Google Scholar 

  38. Nozaki T, Masutani M, Watanabe M et al (1999) Syncytiotrophoblastic giant cells in Teratocarcinoma like tumors derived from Parp-disrupted mouse embryonic stem cells. PNAS 96(23):13345–13350

    Article  PubMed  CAS  Google Scholar 

  39. Saxena A, Saffery R, Wong LH et al (2002) Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly (ADP-ribose) polymerase-1 protein and are poly (ADP-ribosyl) ated. J Biol Chem 277:26921–26926

    Article  PubMed  CAS  Google Scholar 

  40. Bhatia M, Kirkland JB, Meckling-Gill KA (1996) Overexpression of poly (ADP-ribose) polymerase promotes cell cycle arrest and inhibits neutrophilic differentiation of NB4 acute promyelocytic leukemia cells. Cell Growth Differ 7(1):91–100

    PubMed  CAS  Google Scholar 

  41. Bhatia M, Kirkland JB, Meckling-Gill KA (1995) Modulation of poly (ADP-ribose) polymerase during neutrophilic and monocytic differentiation of promyelocytic (NB4) and myelocytic (HL-60) leukaemia cells. J Biochem 308:131–137

    CAS  Google Scholar 

  42. Harnacke K, Kruhoffer M, Orntoft TF, Hass R (2005) Down-modulation of poly(ADP-ribose) polymerase-1 (PARP-1) in human TUR leukemia cells restores transcriptional responsiveness for differentiation and cell cycle arrest. Eur J Cell Biol 84(11):885–896 [abstract]

    Article  PubMed  CAS  Google Scholar 

  43. Masutani M, Nozaki T, Watanabe M et al (2001) Involvement of poly(ADP-ribose) polymerase in trophoblastic cell differentiation during tumorigenesis. Mutant Res 477:111–117

    CAS  Google Scholar 

  44. Shiokawa M, Masutani M, Fujihara H et al (2005) Genetic alteration of poly(ADP-ribose) polymerase-1 in human germ cell tumors. Jpn J Clin Oncol 35(2):97–102

    Article  PubMed  Google Scholar 

  45. Sevigny MB, Silva JM, Lan WC, Alano CC, Swanson RA (2003) Expression and activity of poly(ADP-ribose) glycohydrolase in cultured astrocytes, neurons, and C6 glioma cells. Mol Brain Res 117(2):213–220 [abstract]

    Article  PubMed  CAS  Google Scholar 

  46. Kraus W, Lis J (2003) PARP goes transcription. Cell 113(6):677–683

    Article  PubMed  CAS  Google Scholar 

  47. Pavri R, Lewis B, Kim TK et al (2005) PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Moll Cell 18(1):83–96 [abstract]

    Article  CAS  Google Scholar 

  48. Idogawa M, Yamada T, Honda K et al (2005) Poly(ADP-ribose) polymerase-1 is a component of the oncogenic T-cell factor-4/beta-catenin complex. Gastroenterology 128(7):1919–1936 [abstract]

    Article  PubMed  CAS  Google Scholar 

  49. Soldatenkov VA, Albor A, Patel BKR et al (1999) Regulation of the human poly(ADP-ribose) polymerase promoter by ETS transcription factor. Oncogene 18(27):3954–3962

    Article  PubMed  CAS  Google Scholar 

  50. Ogino H, Nozaki T, Gunji A et al (2007) Loss of Parp-1 affects gene expression profile in a genome-wide manner in ES cells and liver cells. BMC Genomics 8:227. doi:10.1186/1471-2164-8-227

    Article  Google Scholar 

  51. Aldinussi A, Gerlini G, Fossati S et al (2007) A key role for poly (ADP-ribose)-1 during human dendritic cell maturation. J Immuno 179:305–312

    Google Scholar 

  52. Zaniolo K, Desnoyers S, Leclerc S, Guérin S (2007) Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1. BMC Genomics 8:96. doi:10.1186/1471-2199-8-96

    Article  CAS  Google Scholar 

  53. Tong WM, Hande MP, Lansdorp PM, Wang ZQ (2001) DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol Cell Biol 21(12):4046–4054

    Article  PubMed  CAS  Google Scholar 

  54. Eberhart CG (2003) Medulloblastoma in mice lacking p53 and PARP. Am J Pathol 162(1):7–10

    PubMed  CAS  Google Scholar 

  55. Oei SL, Griesenbeck J, Schweiger M, Ziegler M (1998) Regulation of RNA polymerase II-dependent transcription by poly(ADP-ribosyl)ation of transcription factors. JBC 273:31644–31647

    Article  CAS  Google Scholar 

  56. Hassa PO, Buerki C, Lombardi C, Imhof R, Hottiger MO (2003) Transcriptional coactivation of nuclear factor Kappa B-dependent gene expression by p300 is regulated by poly (ADP)-ribose polymerase-1. JBC 278(46):45145–45153

    Article  CAS  Google Scholar 

  57. Nie J, Sakamoto S, Song D, Qu Z, Ota K, Taniguchi T (1998) Interaction of Oct-1 and automodification domain of poly (ADP-ribose) synthetase. FEBS Lett 424(1–2):27–32

    Article  PubMed  CAS  Google Scholar 

  58. Dear TN, Hainzl T, Follo M (1997) Identification of interaction partners for the basic-helix-loop-helix protein E47. Oncogene 14:891–898

    Article  PubMed  CAS  Google Scholar 

  59. Butler AJ, Ordhal CP (1999) Poly (ADP-Ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Boil 19(1):296–306

    CAS  Google Scholar 

  60. Taniguchi T, Agemori M, Kameshita I, Nishikimi M, Shizuta Y (1982) Participation of poly(ADP-ribosyl)ation in the depression of RNA synthesis caused by treatment of mouse lymphoma cells with methylnitrosourea. J BC 257:4027–4030

    CAS  Google Scholar 

  61. Shimokawa T, Masutani M, Nagasawa S et al (1999) Isolation and cloning of rat poly (ADP-ribose) glycohydrolase: presence of a potential nuclear export signal conserved in mammalian orthologs. J Biochem 126:748–755

    PubMed  CAS  Google Scholar 

  62. Erdelyi K, Kiss A, Bankondi E et al (2005) Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol 68:895–904

    PubMed  CAS  Google Scholar 

  63. Frizzell KM, Gamble MJ, Berrocal JG (2009) Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J Biol Chem 284(49):33926–33938 [abstract]

    Article  PubMed  CAS  Google Scholar 

  64. Wang ZQ, Stingl L, Morrison C et al (1997) PARP is important for genomic stability but dispensable in? Apoptosis. Genes Dev 11:2347–2358

    Article  PubMed  CAS  Google Scholar 

  65. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    PubMed  CAS  Google Scholar 

  66. Tentori L, Lacal PM, Muzi A et al (2007) Poly(ADP-ribose) polymerase (PARP) inhibition or PARP-1 gene deletion reduces angiogenesis. Eur J Cancer 43(14):2124–2133

    Article  PubMed  CAS  Google Scholar 

  67. Pyriochou A, Olah G, Deitch EA, Szabo C, Papapetropoulos A (2008) Inhibition of angiogenesis by the poly (ADP-ribose) polymerase inhibitor PJ-34. IJMM 22:113–118

    CAS  Google Scholar 

  68. Rajesh M, Mukhopadhyay P, Bátkai S et al (2006) Pharmacological inhibition of poly (ADP-ribose) polymerase inhibits angiogenesis. BBRC 350(2):352–357

    PubMed  CAS  Google Scholar 

  69. Rajesh M, Mukhopadhyay P, Godlewski G (2006) Poly (ADP-ribose) polymerase inhibition decreases angiogenesis. BBRC 350(4):1056–1062

    PubMed  CAS  Google Scholar 

  70. Berger NA, Adams JW, Sikorski GW et al (1978) Synthesis of DNA and poly (Adenosine Diphosphate Ribose) in normal and chronic lymphocytic leukemia lymphocytes. J Clin Inves 62:111–118

    Article  CAS  Google Scholar 

  71. Wielckens K, Garbrecht M, Kittler M, Hilz H (1980) ADP-ribosylation of nuclear proteins in normal lymphocytes and in low- grade malignant non-Hodgkin lymphoma cells. Eur J Biochem 104:279–287

    Article  PubMed  CAS  Google Scholar 

  72. Hirai K, Ueda K, Hayaishi O (1983) Abberation of poly (adenosine diphosphate ribose) in human colon adenomatous polyps and cancers. Cancer Res 43:3441–3446

    PubMed  CAS  Google Scholar 

  73. Fukushima M, Kuzuya OK, Ikai K (1981) Poly (ADP-ribose) synthesis in human cervical cancer cell diagnostic cytological usefulness. Cancer Lett 14:227–236

    Article  PubMed  CAS  Google Scholar 

  74. Shiobara M, Miyazaki M, Ito H et al (2001) Enhanced polyadenosine diphosphate ribosylation in cirrhotic liver and carcinoma tissues in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 16:338–344

    Article  PubMed  CAS  Google Scholar 

  75. Lin L, Li J, Wang YL et al (2009) Relationship of PARG with colorectal carcinoma PARP, VEGF and b-FGF in colorectal carcinoma. Chin J Cancer Res 21(2):135–141

    Article  CAS  Google Scholar 

  76. Leal AP et al (2009) PARP inhibitors: New partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med (in press). Doi:10.1016

  77. Lord CJ, McDonald S, Swift S et al (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7:2010–2019

    Article  CAS  Google Scholar 

  78. Turner NC, Lord CJ, Iorns E et al (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27(9):1368–1377

    Article  PubMed  CAS  Google Scholar 

  79. Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26(22):3785–3790

    Article  PubMed  CAS  Google Scholar 

  80. Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917 [abstract]

    Article  PubMed  CAS  Google Scholar 

  81. Turner N, Tutt A, Ashworth A (2005) Targeting the DNA repair defect of BRCA tumours. Curr Opin Pharmacol 5(4):388–393

    Article  PubMed  CAS  Google Scholar 

  82. De Soto JA, Wang X, Tominaga Y et al (2006) The inhibition and treatment of breast cancer with poly (ADP-ribose) polymerase (PARP-1) inhibitors. Int J Biol Sci 2(4):179–185

    PubMed  Google Scholar 

  83. De Soto JA, Deng CX (2006) PARP-1 inhibitors: are they the long-sought genetically specific drugs for BRCA1/2-associated breast cancers? Int J Med Sci 3(4):117–123

    PubMed  Google Scholar 

  84. Curtin NJ (2005) PARP inhibitors for cancer therapy. Expert Rev Mol Med 7(4):1–20 [abstract]

    Article  PubMed  Google Scholar 

  85. Liu X, Shi Y, Guan R et al (2008) Potentiation of temozolomide cytotoxicity by poly(ADP)ribose polymerase inhibitor ABT-888 requires a conversion of single stranded DNA damages to double-stranded DNA breaks. Mol Cancer Res 6(10):1621–1629

    PubMed  CAS  Google Scholar 

  86. Suesse S, Scholz CJ, Buerkle A, Iler LW (2004) Poly (ADP-ribose) polymerase (PARP-1) and P53 independently function in regulating double strand break repair in primate cells. Nucleic Acids Res 32:2669–2680

    Google Scholar 

  87. Purnell MR, Whish WJD (1980) Novel inhibitors of poly (ADP-ribose) synthetase. J Biochem 185:775–777

    CAS  Google Scholar 

  88. Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly (ADP-ribose) synthetase and mono(ADP-ribosyl) transferase. J Biol Chem 267:1569–1575

    PubMed  CAS  Google Scholar 

  89. Genovese T, Di Paola R, Catalano P et al (2004) Treatment with a novel poly(ADP-ribose) glycohydrolase inhibitor reduces development of septic shock-like syndrome induced by zymosan in mice. Crit Care Med 32(6):1365–1374

    Article  PubMed  CAS  Google Scholar 

  90. Masutani M, Shimokawa T, Igarashi M et al (2002)Inhibition of poly(ADP-ribose) glycohydrolase activity by cyclic peptide antibiotics containing piperazic acid residues. Proceedings of the Japanese academy; Ser B, physical and biological sciences 78(1):15–17

  91. Formentini L, Arapistas P, Pitelli M et al (2008) Mono-galloyl glucose derivatives are potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors and partially reduced PARP-1 dependent cell death. BJP 155:1235–1249

    CAS  Google Scholar 

  92. Yang X, Lippman ME (1999) BRCA1 and BRCA2 in breast cancer. Breast Cancer Res Treat 54(1):1–10

    Article  PubMed  CAS  Google Scholar 

  93. De Soto JA, Wang X, Tominaga Y et al (2006) The inhibition and treatment of breast cancer with poly (ADP-ribose) polymerase (PARP-1) inhibitors. Int J Biol Sci 2(4):179–185

    PubMed  Google Scholar 

  94. Munozo-Gamez JA, Martin-Olivia D, Aguilar-Quesada R (2005) PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis. Biochem J 386:119–125

    Article  Google Scholar 

  95. Rottenberg S, Jaspers JE, Kersbergen A et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. PNAS 105(44):17079–17084

    Article  PubMed  Google Scholar 

  96. Gopall R, Hong C & Yi S (2009) Gefitinib as monotherapy in the first-line setting in non-small cell lung Cancer. http://www.ispub.com/journal/the_internet_journal_of_pulmonary_medicine/volume_11_number_2_5/article/gefitinib-as-monotherapy-in-the-first-line-setting-in-non-small-cell-lung-cancer.html

  97. Albert JM, Cao C, Kim KW et al (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13(10):3033–3042

    Article  PubMed  CAS  Google Scholar 

  98. Kinders RJ, Hollingshead M, Khin S et al (2008) Preclinical modeling of a phase 0 clinical trial: qualification of a pharmacodynamic assay of poly (ADP-ribose) polymerase in tumor biopsies of mouse xenografts. Clin Cancer Res 14(21):6877–6885

    Article  PubMed  CAS  Google Scholar 

  99. Donawho CK, Luo Y, Penning TD et al (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13(9):2728–2737

    Article  PubMed  CAS  Google Scholar 

  100. Calabrese CR, Batey MA, Thomas HD (2003) Identification of potent nontoxic poly (ADP-ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies. Clin Cancer Res 9:2711–2718

    PubMed  CAS  Google Scholar 

  101. Hao LX, Wang YL, Cai L, YY LI (2007) Inhibitory effect of 5-Aminoisoquinolinone on Parp activity in colon carcinoma cell line HT-29. Chin J Cancer 26(6):566–571

    CAS  Google Scholar 

  102. Li M, Threadgill MD, Wang YL, Cai L, Lin X (2009) A poly (ADP-ribose) polymerase inhibition down-regulates expression of metastasis-related genes in CT26 colon carcinoma cells. Pathobiology 76:108–116

    Article  PubMed  CAS  Google Scholar 

  103. Tentori L, Portarena I, Barbarino M et al (2003) Inhibition of telomerase increases resistance of melanoma cells to temozolomide, but not to temozolomide combined with poly (ADP-ribose) polymerase inhibitor. Mol Pharmacol 63:192–202

    Article  PubMed  CAS  Google Scholar 

  104. Tentori L, Leonetti C, Scarsella M et al (2003) Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res 9:5370–5379

    PubMed  CAS  Google Scholar 

  105. Tentori L, Leonetti C, Scarsella M et al (2005) Poly(ADP-ribose) glycohydrolase inhibitor as chemosensitiser of malignant melanoma for temozolomide. Eur J Cancer 41(18):2948–2957

    Article  PubMed  CAS  Google Scholar 

  106. Dungey FA, Caldecott KW, Chalmers AJ (2009) Enhanced radiosensitisation of human glioma cells by combining inhibition of PARP with inhibition of Hsp90. Mol Cancer Ther 8(8):2243–2254

    Article  PubMed  CAS  Google Scholar 

  107. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  PubMed  CAS  Google Scholar 

  108. Gien LT, Mackay HJ (2010) The emerging role of PARP inhibitors in the treatment of epithelial ovarian cancer. J Oncol. doi:10.1155/2010/151750

    PubMed  Google Scholar 

Download references

Grants support

This work was supported by the National Nature Science Foundation of China (NSFC: 30870946)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-lan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauzee, N.J.S., Pan, J. & Wang, Yl. PARP and PARG Inhibitors—New Therapeutic Targets in Cancer Treatment. Pathol. Oncol. Res. 16, 469–478 (2010). https://doi.org/10.1007/s12253-010-9266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-010-9266-6

Keywords

Navigation