Skip to main content

In Vitro Assay Systems for the Assessment of Oestrogenicity

  • Chapter
  • First Online:
Plastics in Dentistry and Estrogenicity

Abstract

Exogenous compounds behaving similarly to the endogenous estrogens are called xenoestrogens, and their intake by humans or animals may interfere with the normal hormonal balance of the organism. Especially in dental practice, there are many products such as restorative materials, liners, adhesives, oral prosthetic devices, tissue substitutes and rebase materials, which may possess oestrogenic activity, most important among them being bisphenol-A (BPA). This chapter is focusing on the presentation of the in vitro assays used in the literature for the assessment of the oestrogenicity of various compounds with an emphasis on those used in dental practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93(12):5925–5930

    Article  PubMed  Google Scholar 

  2. Moggs JG, Orphanides G (2001) Estrogen receptors: orchestrators of pleiotropic cellular responses. EMBO Rep 2(9):775–781

    Article  PubMed  Google Scholar 

  3. Maggiolini M, Picard D (2010) The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol 204(2):105–114

    Article  PubMed  Google Scholar 

  4. Singleton DW, Khan SA (2003) Xenoestrogen exposure and mechanisms of endocrine disruption. Front Biosci 8:s110–s118

    Article  PubMed  Google Scholar 

  5. Allinson M, Shiraishi F, Salzman SA, Allinson G (2010) In vitro and immunological assessment of the estrogenic activity and concentrations of 17beta-estradiol, estrone, and ethinyl estradiol in treated effluent from 45 wastewater treatment plants in Victoria, Australia. Arch Environ Contam Toxicol 58(3):576–586

    Article  PubMed  Google Scholar 

  6. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95

    Article  PubMed  Google Scholar 

  7. Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254–255:179–186

    Article  PubMed  Google Scholar 

  8. Eliades T (2007) Orthodontic materials research and applications: part 2. Current status and projected future developments in materials and biocompatibility. Am J Orthod Dentofacial Orthop 131(2):253–262

    Article  PubMed  Google Scholar 

  9. Hashimoto Y, Moriguchi Y, Oshima H, Nishikawa J, Nishihara T, Nakamura M (2000) Estrogenic activity of chemicals for dental and similar use in vitro. J Mater Sci Mater Med 11(8):465–468

    Article  PubMed  Google Scholar 

  10. Olea N, Pulgar R, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A et al (1996) Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 104(3):298–305

    Article  PubMed  Google Scholar 

  11. Hashimoto Y, Nakamura M (2000) Estrogenic activity of dental materials and bisphenol-A related chemicals in vitro. Dent Mater J 19(3):245–262

    Article  PubMed  Google Scholar 

  12. Tsai WT (2006) Human health risk on environmental exposure to Bisphenol-A: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 24(2):225–255

    Article  PubMed  Google Scholar 

  13. Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ (2010) Bisphenol A and related compounds in dental materials. Pediatrics 126(4):760–768

    Article  PubMed  Google Scholar 

  14. Diel P, Smolnikar K, Michna H (1999) In vitro test systems for the evaluation of the estrogenic activity of natural products. Planta Med 65(3):197–203

    Article  PubMed  Google Scholar 

  15. Mueller SO (2002) Overview of in vitro tools to assess the estrogenic and antiestrogenic activity of phytoestrogens. J Chromatogr B Analyt Technol Biomed Life Sci 777(1–2):155–165

    Article  PubMed  Google Scholar 

  16. Van Aswegen CH, Purdy RH, Wittliff JL (1989) Binding of 2-hydroxyestradiol and 4-hydroxyestradiol to estrogen receptors from human breast cancers. J Steroid Biochem 32(4):485–492

    Article  PubMed  Google Scholar 

  17. Shelby MD, Newbold RR, Tully DB, Chae K, Davis VL (1996) Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect 104(12):1296–1300

    Article  PubMed  Google Scholar 

  18. Bolger R, Wiese TE, Ervin K, Nestich S, Checovich W (1998) Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environ Health Perspect 106(9):551–557

    Article  PubMed  Google Scholar 

  19. Fokialakis N, Lambrinidis G, Mitsiou DJ, Aligiannis N, Mitakou S, Skaltsounis AL et al (2004) A new class of phytoestrogens; evaluation of the estrogenic activity of deoxybenzoins. Chem Biol 11(3):397–406

    Article  PubMed  Google Scholar 

  20. Nikov GN, Hopkins NE, Boue S, Alworth WL (2000) Interactions of dietary estrogens with human estrogen receptors and the effect on estrogen receptor-estrogen response element complex formation. Environ Health Perspect 108(9):867–872

    Article  PubMed  Google Scholar 

  21. Kraichely DM, Sun J, Katzenellenbogen JA, Katzenellenbogen BS (2000) Conformational changes and coactivator recruitment by novel ligands for estrogen receptor-alpha and estrogen receptor-beta: correlations with biological character and distinct differences among SRC coactivator family members. Endocrinology 141(10):3534–3545

    Article  PubMed  Google Scholar 

  22. Routledge EJ, White R, Parker MG, Sumpter JP (2000) Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biol Chem 275(46):35986–35993

    Article  PubMed  Google Scholar 

  23. Zhou G, Cummings R, Li Y, Mitra S, Wilkinson HA, Elbrecht A et al (1998) Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol Endocrinol 12(10):1594–1604

    Article  PubMed  Google Scholar 

  24. Hashimoto Y, Moriguchi Y, Oshima H, Kawaguchi M, Miyazaki K, Nakamura M (2001) Measurement of estrogenic activity of chemicals for the development of new dental polymers. Toxicol In Vitro 15(4–5):421–425

    Article  PubMed  Google Scholar 

  25. Nishijima M, Hashimoto Y, Nakamura M (2002) Cytocompatibility of new phthalate ester-free tissue conditioners in vitro. Dent Mater J 21(2):118–132

    Article  PubMed  Google Scholar 

  26. Nishikawa J, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T (1999) New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol Appl Pharmacol 154(1):76–83

    Article  PubMed  Google Scholar 

  27. Nomura Y, Ishibashi H, Miyahara M, Shinohara R, Shiraishi F, Arizono K (2003) Effects of dental resin metabolites on estrogenic activity in vitro. J Mater Sci Mater Med 14(4):307–310

    Article  PubMed  Google Scholar 

  28. Wrenn CK, Katzenellenbogen BS (1993) Structure-function analysis of the hormone binding domain of the human estrogen receptor by region-specific mutagenesis and phenotypic screening in yeast. J Biol Chem 268(32):24089–24098

    PubMed  Google Scholar 

  29. Klein KO, Baron J, Colli MJ, McDonnell DP, Cutler GB Jr (1994) Estrogen levels in childhood determined by an ultrasensitive recombinant cell bioassay. J Clin Invest 94(6):2475–2480

    Article  PubMed  Google Scholar 

  30. Berry M, Metzger D, Chambon P (1990) Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 9(9):2811–2818

    PubMed  Google Scholar 

  31. Reel JR, Lamb IJ, Neal BH (1996) Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundam Appl Toxicol 34(2):288–305

    Article  PubMed  Google Scholar 

  32. Soto AM, Maffini MV, Schaeberle CM, Sonnenschein C (2006) Strengths and weaknesses of in vitro assays for estrogenic and androgenic activity. Best Pract Res Clin Endocrinol Metab 20(1):15–33

    Article  PubMed  Google Scholar 

  33. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103(Suppl 7):113–122

    Article  PubMed  Google Scholar 

  34. Eliades T, Gioni V, Kletsas D, Athanasiou A, Eliades G (2007) Oestrogenicity of orthodontic adhesive resins. Eur J Orthod 29(4):404–407

    Article  PubMed  Google Scholar 

  35. Eliades T, Pratsinis H, Athanasiou AE, Eliades G, Kletsas D (2009) Cytotoxicity and estrogenicity of Invisalign appliances. Am J Orthod Dentofacial Orthop 136(1):100–103

    Article  PubMed  Google Scholar 

  36. Gioka C, Eliades T, Zinelis S, Pratsinis H, Athanasiou AE, Eliades G et al (2009) Characterization and in vitro estrogenicity of orthodontic adhesive particulates produced by simulated debonding. Dent Mater 25(3):376–382

    Article  PubMed  Google Scholar 

  37. Hashimoto Y, Kawaguchi M, Miyazaki K, Nakamura M (2003) Estrogenic activity of tissue conditioners in vitro. Dent Mater 19(4):341–346

    Article  PubMed  Google Scholar 

  38. Hashimoto Y, Nakamura M (2004) Cytocompatibility and viscoelastic properties of phthalate ester-free tissue conditioners. Dent Mater J 23(3):412–418

    Article  PubMed  Google Scholar 

  39. Hashimoto Y, Tanaka J, Suzuki K, Nakamura M (2007) Cytocompatibility of a tissue conditioner containing vinyl ester as a plasticizer. Dent Mater J 26(6):785–791

    Article  PubMed  Google Scholar 

  40. Kostoryz EL, Eick JD, Glaros AG, Judy BM, Welshons WV, Burmaster S et al (2003) Biocompatibility of hydroxylated metabolites of BISGMA and BFDGE. J Dent Res 82(5):367–371

    Article  PubMed  Google Scholar 

  41. Lewis JB, Rueggeberg FA, Lapp CA, Ergle JW, Schuster GS (1999) Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin Oral Investig 3(3):107–113

    Article  PubMed  Google Scholar 

  42. Berthois Y, Pons M, Dussert C, Crastes de Paulet A, Martin PM (1994) Agonist–antagonist activity of anti-estrogens in the human breast cancer cell line MCF-7: an hypothesis for the interaction with a site distinct from the estrogen binding site. Mol Cell Endocrinol 99(2):259–268

    Article  PubMed  Google Scholar 

  43. Welshons WV, Murphy CS, Koch R, Calaf G, Jordan VC (1987) Stimulation of breast cancer cells in vitro by the environmental estrogen enterolactone and the phytoestrogen equol. Breast Cancer Res Treat 10(2):169–175

    Article  PubMed  Google Scholar 

  44. Borenfreund E, Babich H, Martin-Alguacil N (1990) Rapid chemosensitivity assay with human normal and tumor cells in vitro. In Vitro Cell Dev Biol 26(11):1030–1034

    Article  PubMed  Google Scholar 

  45. Welshons WV, Rottinghaus GE, Nonneman DJ, Dolan-Timpe M, Ross PF (1990) A sensitive bioassay for detection of dietary estrogens in animal feeds. J Vet Diagn Invest 2(4):268–273

    Article  PubMed  Google Scholar 

  46. Jones PA, Baker VA, Irwin AJ, Earl LK (1998) Interpretation of the in vitro proliferation response of mcf-7 cells to potential oestrogens and non-oestrogenic substances. Toxicol In Vitro 12(4):373–382

    Article  PubMed  Google Scholar 

  47. Sonnenschein C, Soto AM, Michaelson CL (1996) Human serum albumin shares the properties of estrocolyone-I, the inhibitor of the proliferation of estrogen-target cells. J Steroid Biochem Mol Biol 59(2):147–154

    Article  PubMed  Google Scholar 

  48. Soto AM, Silvia RM, Sonnenschein C (1992) A plasma-borne specific inhibitor of the proliferation of human estrogen-sensitive breast tumor cells (estrocolyone-I). J Steroid Biochem Mol Biol 43(7):703–712

    Article  PubMed  Google Scholar 

  49. Villalobos M, Olea N, Brotons JA, Olea-Serrano MF, Ruiz de Almodovar JM, Pedraza V (1995) The E-screen assay: a comparison of different MCF7 cell stocks. Environ Health Perspect 103(9):844–850

    Article  PubMed  Google Scholar 

  50. Poulin R, Baker D, Poirier D, Labrie F (1991) Multiple actions of synthetic ‘progestins’ on the growth of ZR-75-1 human breast cancer cells: an in vitro model for the simultaneous assay of androgen, progestin, estrogen, and glucocorticoid agonistic and antagonistic activities of steroids. Breast Cancer Res Treat 17(3):197–210

    Article  PubMed  Google Scholar 

  51. Holinka CF, Anzai Y, Hata H, Kimmel N, Kuramoto H, Gurpide E (1989) Proliferation and responsiveness to estrogen of human endometrial cancer cells under serum-free culture conditions. Cancer Res 49(12):3297–3301

    PubMed  Google Scholar 

  52. Ignar-Trowbridge DM, Teng CT, Ross KA, Parker MG, Korach KS, McLachlan JA (1993) Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol 7(8):992–998

    Article  PubMed  Google Scholar 

  53. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB (1990) A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology 127(6):2757–2762

    Article  PubMed  Google Scholar 

  54. Markiewicz L, Garey J, Adlercreutz H, Gurpide E (1993) In vitro bioassays of non-steroidal phytoestrogens. J Steroid Biochem Mol Biol 45(5):399–405

    Article  PubMed  Google Scholar 

  55. Halabalaki M, Alexi X, Aligiannis N, Lambrinidis G, Pratsinis H, Florentin I et al (2006) Estrogenic activity of isoflavonoids from Onobrychis ebenoides. Planta Med 72(6):488–493

    Article  PubMed  Google Scholar 

  56. Reiner GC, Katzenellenbogen BS, Bindal RD, Katzenellenbogen JA (1984) Biological activity and receptor binding of a strongly interacting estrogen in human breast cancer cells. Cancer Res 44(6):2302–2308

    PubMed  Google Scholar 

  57. Balleine RL, Clarke CL (1999) Expression of the oestrogen responsive protein pS2 in human breast cancer. Histol Histopathol 14(2):571–578

    PubMed  Google Scholar 

  58. Jeltsch JM, Roberts M, Schatz C, Garnier JM, Brown AM, Chambon P (1987) Structure of the human oestrogen-responsive gene pS2. Nucleic Acids Res 15(4):1401–1414

    Article  PubMed  Google Scholar 

  59. Lieberman ME, Gorski J, Jordan VC (1983) An estrogen receptor model to describe the regulation of prolactin synthesis by antiestrogens in vitro. J Biol Chem 258(8):4741–4745

    PubMed  Google Scholar 

  60. Lieberman ME, Maurer RA, Gorski J (1978) Estrogen control of prolactin synthesis in vitro. Proc Natl Acad Sci U S A 75(12):5946–5949

    Article  PubMed  Google Scholar 

  61. Tarumi H, Imazato S, Narimatsu M, Matsuo M, Ebisu S (2000) Estrogenicity of fissure sealants and adhesive resins determined by reporter gene assay. J Dent Res 79(11):1838–1843

    Article  PubMed  Google Scholar 

  62. Jones PS, Parrott E, White IN (1999) Activation of transcription by estrogen receptor alpha and beta is cell type- and promoter-dependent. J Biol Chem 274(45):32008–32014

    Article  PubMed  Google Scholar 

  63. Badia E, Duchesne MJ, Fournier-Bidoz S, Simar-Blanchet AE, Terouanne B, Nicolas JC et al (1994) Hydroxytamoxifen induces a rapid and irreversible inactivation of an estrogenic response in an MCF-7-derived cell line. Cancer Res 54(22):5860–5866

    PubMed  Google Scholar 

  64. Oliva J, El Messaoudi S, Pellestor F, Fuentes M, Georget V, Balaguer P et al (2005) Involvement of HP1alpha protein in irreversible transcriptional inactivation by antiestrogens in breast cancer cells. FEBS Lett 579(20):4278–4286

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Kletsas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pratsinis, H., Kletsas, D. (2014). In Vitro Assay Systems for the Assessment of Oestrogenicity. In: Eliades, T., Eliades, G. (eds) Plastics in Dentistry and Estrogenicity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29687-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29687-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29686-4

  • Online ISBN: 978-3-642-29687-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics