Skip to main content

Human Health Effects of Bisphenol A

  • Chapter
  • First Online:
Toxicants in Food Packaging and Household Plastics

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Bisphenol A (BPA) is a high production endocrine disrupting chemical found in numerous consumer products. BPA has been used commercially since 1957 to make hard polycarbonate plastics and epoxy resins used in food-can linings, cash-register receipts, and dental resins. The ubiquity of BPA in our environment results in exposure to this chemical daily in human populations. But controversy remains regarding how much BPA humans actually ingest or otherwise encounter. Many laboratory animal and human studies have linked exposures to BPA, a hormone mimicking chemical, to adverse health effects, including altered behavior and obesity in children, reproductive abnormalities, cardiovascular changes, and various cancers. However, there have been considerable inconsistencies in the outcomes from these studies with respect to the nature of the adverse health effects observed, and questions as to whether the BPA dose at which they occur are within the range of non-occupational human exposures. This chapter reviews the latest research on BPA, focusing on human exposure, discussions of biomonitoring studies and toxicokinetic models, human health effects, and research needs. We also include illustrative examples of animal models that address whether BPA-exposure is associated with changes in certain health endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo N, Davis B, Schaeberle CM et al (2013) Perinatally administered bisphenol A acts as a mammary gland carcinogen in rats. Environ Health Perspect 121(9):1040–1046

    Google Scholar 

  • Andersen HR, Andersson A-M, Arnold SF et al (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect 107(Suppl 1):89–108

    Google Scholar 

  • Apter D (1996) Hormonal events during female puberty in relation to breast cancer risk. Eur J Cancer Prev 5(6):476–482

    Google Scholar 

  • Arora M, Austin C (2013) Teeth as a biomarker of past chemical exposure. Curr Opin Pediatr 25(2):261–267

    Article  CAS  PubMed  Google Scholar 

  • Barouki R, Aggerbeck M, Aggerbeck L et al (2012) The aryl hydrocarbon receptor system. Drug Metab Drug Interact 27(1):3–8

    Google Scholar 

  • Bellinger DC (2004) What is an adverse effect? A possible resolution of clinical and epidemiological perspectives on neurobehavioral toxicity. Environ Res 95(3):394–405

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum LS, Bucher JR, Collman GW et al (2012) Consortium-based science: the NIEHS’s multipronged, collaborative approach to assessing the health effects of bisphenol A. Environ Health Perspect 120(12):1640–1644

    Google Scholar 

  • Bloom MS, Kim D, Vom Saal FS et al (2011a) Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril 96(3):672–677

    Google Scholar 

  • Bloom MS, Vom Saal FS, Kim D et al (2011b) Serum unconjugated bisphenol A concentrations in men may influence embryo quality indicators during in vitro fertilization. Environ Toxicol Pharmacol 32(2):319–323

    Google Scholar 

  • Boyle CA, Boulet S, Schieve LA et al (2011) Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics 127(6):1034–1042

    Google Scholar 

  • Braun JM, Yolton K, Dietrich KN et al (2009) Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 117(12):1945–1952

    Google Scholar 

  • Braun JM, Daniels JL, Poole C et al (2010a) A prospective cohort study of biomarkers of prenatal tobacco smoke exposure: the correlation between serum and meconium and their association with infant birth weight. Environ Health 9(53):1–11

    Google Scholar 

  • Braun JM, Kalkbrenner AE, Calafat AM et al (2010b) Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect 119(9):131–137

    Google Scholar 

  • Braun JM, Kalkbrenner AE, Calafat AM et al (2011) Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 128(5):873–882

    Google Scholar 

  • Calafat AM (2010) BPA biomonitoring and biomarker studies. In: FAO/WHO expert meeting on bisphenol A (BPA), Ottawa, Canada, 1–5 Nov 2010

    Google Scholar 

  • Calafat AM, Ye X, Wong LY et al (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116(1):39–44

    Google Scholar 

  • Cantonwine D, Meeker JD, Hu H et al (2010) Bisphenol a exposure in Mexico City and risk of prematurity: a pilot nested case control study. Environ Health 9(62):2–7

    Google Scholar 

  • Carwile JL, Michels KB (2011) Urinary bisphenol A and obesity: NHANES 2003–2006. Environ Res 111(6):825–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carwile JL, Ye X, Zhou X et al (2011) Canned soup consumption and urinary bisphenol A: a randomized crossover trial. JAMA 306(20):2218–2220

    Google Scholar 

  • Castorina R, Bradman A, Fenster L et al (2010) Comparison of current-use pesticide and other toxicant urinary metabolite levels among pregnant women in the CHAMACOS cohort and NHANES. Environ Health Perspect 118(6):856–863

    Google Scholar 

  • Chamorro-Garcia R, Kirchner S, Li X et al (2012) Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism. Environ Health Perspect 120(7):984–989

    Google Scholar 

  • Chapin RE, Adams J, Boekelheide K et al (2008) NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res B Dev Reprod Toxicol 83(3):157–395

    Google Scholar 

  • Cobellis L, Colacurci N, Trabucco E et al (2009) Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. Biomed Chromatogr 23(11):1186–1190

    Google Scholar 

  • Crain DA, Eriksen M, Iguchi T et al (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 24(2):225–239

    Google Scholar 

  • Dekant W, Volkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134

    Article  CAS  PubMed  Google Scholar 

  • Doerge DR, Twaddle NC, Woodling KA et al (2010) Pharmacokinetics of bisphenol A in neonatal and adult Rhesus monkeys. Toxicol Appl Pharmacol 248(1):1–11

    Google Scholar 

  • Ehrlich S, Williams PL, Missmer SA et al (2012a) Urinary bisphenol A concentrations and implantation failure among women undergoing in vitro fertilization. Environ Health Perspect 120(7):978–983

    Google Scholar 

  • Ehrlich S, Williams PL, Missmer SA et al (2012b) Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod 27(12):3583–3592

    Google Scholar 

  • European Food Safety Authority (EFSA) (2010) Scientific opinion on bisphenol A: evaluation of a study investigating its neurodevelopmental toxicity, review of recent scientific literature on its toxicity and advice on the Danish risk assessment of bisphenol A. EFSA J 8(9):1829. http://www.efsa.europa.eu/en/efsajournal/pub/1829.htm. Accessed 4 Feb 2014

  • European Food Safety Authority (EFSA) (2013) Press release on human BPA exposure estimates. http://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm. Accessed 14 Aug 2013

  • Fisher JW, Twaddle NC, Vanlandingham M et al (2011) Pharmacokinetic modeling: prediction and evaluation of route dependent dosimetry of bisphenol A in monkeys with extrapolation to humans. Toxicol Appl Pharmacol 257(1):122–136

    Google Scholar 

  • Food and Drug Administration (FDA) (2010) Update on bisphenol A for use in food contact applications. http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm197739.htm. Accessed 13 Mar 2012

  • Food and Drug Administration (FDA) (2012) Bisphenol A (BPA): use in food contact application. http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm064437.htm. Accessed 21 Sept 2012

  • Food and Drug Administration (FDA) (2013) Indirect food additives: adhesives and components of coatings. https://www.federalregister.gov/articles/2013/07/12/2013-16684/indirect-food-additives-adhesives-and-components-of-coatings. Accessed 1 Aug 2013 2013

  • Fujimoto VY, Kim D, vom Saal FS et al (2011) Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril 95(5):1816–1819

    Google Scholar 

  • Galloway T, Cipelli R, Guralnik J et al (2010) Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect 118(11):1603–1608

    Google Scholar 

  • Geens T, Aerts D, Berthot C et al (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50(10):3725–3740

    Google Scholar 

  • Gerona RR, Woodruff TJ, Dickenson CA et al (2013) BPA, BPA glucuronide, and BPA sulfate in mid-gestation umbilical cord serum in a northern California cohort. Environ Sci Technol 13:1–34

    Google Scholar 

  • Gould JC, Leonard LS, Maness SC et al (1998) Bisphenol A interacts with the estrogen receptor α in a distinct manner from estradiol. Mol Cell Endocrinol 142:203–214

    Google Scholar 

  • Gupta C (2000) Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med 224(2):61–68

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka T, Kawamura N, Hara K et al (2002) Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup Environ Med 59(9):625–628

    Google Scholar 

  • Ho SM, Tang WY, Belmonte de Frausto J et al (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66(11):5624–5632

    Google Scholar 

  • Hong SB, Hong YC, Kim JW et al (2013) Bisphenol A in relation to behavior and learning of school-age children. J Child Psychol Psychiatry 8:890–899

    Google Scholar 

  • Kandaraki E, Chatzigeorgiou A, Livadas S et al (2011) Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab 96(3):480–484

    Google Scholar 

  • Keri RA, Ho SM, Hunt PA et al (2007) An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol 24(2):240–252

    Google Scholar 

  • Kingman A, Hyman J, Masten SA et al (2012) Bisphenol A and other compounds in human saliva and urine associated with the placement of composite restorations. J Am Dent Assoc 143(12):1292–1302

    Google Scholar 

  • Koch HM, Kolossa-Gehring M, Schroter-Kermani C et al (2012) Bisphenol A in 24 h urine and plasma samples of the German environmental specimen bank from 1995 to 2009: a retrospective exposure evaluation. J Expo Sci Environ Epidemiol 22(6):610–616

    Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263

    Google Scholar 

  • Kwintkiewicz J, Nishi Y, Yanase T et al (2010) Peroxisome proliferator-activated receptor-gamma mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environ Health Perspect 118(3):400–406

    Google Scholar 

  • Lakind JS, Naiman DQ (2011) Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey. J Expo Sci Environ Epidemiol 21(3):272–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lang IA, Galloway TS, Scarlett A et al (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300(11):1303–1310

    Google Scholar 

  • Li DK, Zhou Z, Miao M et al (2010) Relationship between urine bisphenol-A (BPA) level and declining male sexual function. J Androl 1(13):500–506

    Google Scholar 

  • Li Y, Burns KA, Arao Y et al (2012) Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor in vitro. Environ Health Perspect 120(7):1029–1035

    Google Scholar 

  • Li DK, Miao M, Zhou Z et al (2013) Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS ONE 8(6):1–6

    Google Scholar 

  • Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45(21):9372–9379

    Article  CAS  PubMed  Google Scholar 

  • Markey CM, Luque EH, Munoz De Toro M et al (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65(4):1215–1223

    Google Scholar 

  • Maserejian NN, Trachtenberg FL, Hauser R et al (2012a) Dental composite restorations and neuropsychological development in children: treatment level analysis from a randomized clinical trial. Neurotoxicology 33(5):1291–1297

    Google Scholar 

  • Maserejian NN, Trachtenberg FL, Hauser R et al (2012b) Dental composite restorations and psychosocial function in children. Pediatrics 130(2):328–338

    Google Scholar 

  • Masuno H, Kidani T, Sekiya K et al (2002) Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 43(5):676–684

    Google Scholar 

  • Masuno H, Iwanami J, Kidani T et al (2005) Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 84(2):319–327

    Google Scholar 

  • McLachlan JA (2001) Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 22(3):319–341

    Article  CAS  PubMed  Google Scholar 

  • Meeker JD, Calafat AM, Hauser R (2010a) Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ Sci Technol 44(4):1458–1463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meeker JD, Ehrlich S, Toth TL et al (2010b) Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol 4:532–539

    Google Scholar 

  • Melzer D, Rice NE, Lewis C et al (2010) Association of urinary bisphenol A concentration with heart disease: evidence from NHANES 2003/06. PLoS ONE 5(1):1–9

    Google Scholar 

  • Mendiola J, Jorgensen N, Andersson AM et al (2010) Are environmental levels of bisphenol A associated with reproductive function in fertile men? Environ Health Perspect 118(9):1286–1291

    Google Scholar 

  • Mendola P, Selevan SG, Gutter S et al (2002) Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment Retard Dev Disabil Res Rev 8(3):188–197

    Google Scholar 

  • Mok-Lin E, Ehrlich S, Williams PL et al (2010) Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl 33(2):385–393

    Google Scholar 

  • Moriyama K, Tagami T, Akamizu T et al (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87:5185–5190

    Google Scholar 

  • Nachman RM, Fox SD, Golden WC et al (2013) Urinary free bisphenol A and bisphenol A-glucuronide concentrations in newborns. J Pediatr 162(4):870–872

    Google Scholar 

  • Nagel SC, vom Saal FS, Thayer KA et al (1997) Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect 105(1):70–76

    Google Scholar 

  • National Toxicology Program (NTP) (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. National Toxicology Program, U.S. Department of Health and Human Services. http://oehha.ca.gov/prop65/CRNR_notices/state_listing/data_callin/pdf/NTP_CERHR_0908_bisphenolA.pdf. Accessed 3 July 2013

  • Newbold RR, Jefferson WN, Padilla-Banks E (2007) Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol 24(2):253–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padmanabhan V, Siefert K, Ransom S et al (2008) Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 28(4):258–263

    Google Scholar 

  • Palanza P, Morellini F, Parmigiani S et al (1999) Prenatal exposure to endocrine disrupting chemicals: effects on behavioral development. Neurosci Biobehav Rev 23(7):1011–1027

    Google Scholar 

  • Patisaul HB, Adewale HB (2009) Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci 3:1–10

    Article  Google Scholar 

  • Patterson TA, Twaddle NC, Roegge CS et al (2013) Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal Rhesus monkeys. Toxicol Appl Pharmacol 267(1):41–48

    Google Scholar 

  • Perera F, Vishnevetsky J, Herbstman JB et al (2012) Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ Health Perspect 120(8):1190–1194

    Google Scholar 

  • Pocar P, Fischer B, Klonisch T et al (2005) Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction. Reproduction 129(4):379–389

    Google Scholar 

  • Prins GS, Ye SH, Birch L et al (2010) Serum bisphenol A pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod Toxicol 1:1–20

    Google Scholar 

  • Richter C, Birnbaum LS, Farabollini F et al (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24(2):199–224

    Google Scholar 

  • Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127(1–2):27–34

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Kawazuma M, Adachi T et al (2004) Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol 141(2):209–214

    Google Scholar 

  • Schug TT, Vogel SA, Vandenberg LN et al (2012) Bisphenol A. In: Schecter A (ed) Dioxins and health: including other persistent organic pollutants and endocrine disruptors, 3rd edn. Wiley, Hoboken, pp 381–414

    Google Scholar 

  • Schug TT, Heindel JJ, Camacho L et al (2013) A new approach to synergize academic and guideline-compliant research: the CLARITY-BPA research program. Reprod Toxicol 5(13):00121–00124

    Google Scholar 

  • Sharpe RM, Drake AJ (2013) Obesogens and obesity—an alternative view? Obesity 20(10):20373–20378

    Google Scholar 

  • Shelby MD (2008) NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. NTP CERHR MON (22):v, vii-ix, 1–64

    Google Scholar 

  • Soto AM, Brisken C, Schaeberle C et al (2013) Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia 24:199–208

    Google Scholar 

  • Stahlhut RW, Welshons WV, Swan SH (2009) Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect 117(5):784–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stump DG, Beck MJ, Radovsky A et al (2010) Developmental neurotoxicity study of dietary bisphenol A in Sprague-Dawley rats. Toxicol Sci 115(1):167–182

    Google Scholar 

  • Taylor JA, Vom Saal FS, Welshons WV et al (2011) Similarity of bisphenol A pharmacokinetics in Rhesus monkeys and mice: relevance for human exposure. Environ Health Perspect 119(4):422–430

    Google Scholar 

  • Teeguarden JG, Calafat AM, Ye X et al (2011) Twenty-four hour human urine and serum profiles of bisphenol A during high-dietary exposure. Toxicol Sci 123(1):48–57

    Google Scholar 

  • Thayer KA, Heindel JJ, Bucher JR et al (2012) Role of environmental chemicals in diabetes and obesity: A National Toxicology Program workshop review. Environ Health Perspect 120(6):779–789

    Google Scholar 

  • Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179

    Article  CAS  PubMed  Google Scholar 

  • Timms BG, Howdeshell KL, Barton L et al (2005) Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci USA 102(19):7014–7019

    Google Scholar 

  • Trasande L, Attina TM, Blustein J (2012) Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA 308(11):1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M et al (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177

    Google Scholar 

  • Vandenberg LN, Maffini MV, Sonnenschein C et al (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95

    Google Scholar 

  • Vandenberg LN, Chahoud I, Heindel JJ et al (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118(8):1055–1070

    Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:1–78

    Google Scholar 

  • Vandenberg LN, Hunt PA, Myers JP et al (2013) Human exposures to bisphenol A: mismatches between data and assumptions. Rev Environ Health 28(1):37–58

    Google Scholar 

  • Vanderloo MJ, Bruckers LM, Janssesn JP (2007) Effects of lifestyle on the onset of puberty as determinant for breast cancer. Eur J Cancer Prev 16(1):17–25

    Article  Google Scholar 

  • Vinas R, Watson CS (2013) Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions. Environ Health Perspect 121(3):352–358

    Article  PubMed Central  PubMed  Google Scholar 

  • Volkel W, Colnot T, Csanady GA et al (2002) Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15(10):1281–1287

    Google Scholar 

  • Volkel W, Bittner N, Dekant W (2005) Quantitation of bisphenol A and bisphenol A glucuronide in biological samples by high performance liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 33:1748–1757

    Article  PubMed  Google Scholar 

  • vom Saal FS, Timms BG, Montano MM et al (1997) Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Nat Acad Sci 94(5):2056–2061

    Google Scholar 

  • vom Saal FS, Akingbemi BT, Belcher SM et al (2007) Chapel Hill bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24:131–138

    Google Scholar 

  • von Goetz N, Wormuth M, Scheringer M et al (2010) Bisphenol A: how the most relevant exposure sources contribute to total consumer exposure. Risk Anal 30(3):473–487

    Google Scholar 

  • Wang J, Sun B, Hou M et al (2012) The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11beta-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int J Obes 23(10):173–179

    Google Scholar 

  • Watson CS, Bulayeva NN, Wozniak AL et al (2007) Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 72:124–134

    Google Scholar 

  • Wetherill YB, Akingbemi BT, Kanno J et al (2007) In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24(2):178–198

    Google Scholar 

  • Wolff MS, Britton JA, Boguski L et al (2008) Environmental exposures and puberty in inner-city girls. Environ Res 107(3):393–400

    Google Scholar 

  • Wolff MS, Teitelbaum SL, Pinney SM et al (2010) Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect 118(7):1039–1046

    Google Scholar 

  • Wolstenholme JT, Rissman EF, Connelly JJ (2011) The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav 59(3):296–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2010) Toxicological and health aspects of bisphenol A. In: Joint FAO/WHO Expert meeting 2–5 November 2010 and Stakeholder meeting on Bisphenol A 1 November 2010, Ottawa, Canada, 2010. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Wright CL, Schwarz JS, Dean SL et al (2010) Cellular mechanisms of estradiol-mediated sexual differentiation of the brain. Trends Endocrinol Metab 21(9):553–561

    Google Scholar 

  • Yang M, Ryu JH, Jeon R et al (2009) Effects of bisphenol A on breast cancer and its risk factors. Arch Toxicol 83(3):281–285

    Google Scholar 

  • Ye X, Zhou X, Needham LL et al (2011) In vitro oxidation of bisphenol A: Is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A? Anal Bioanal Chem 399(3):1071–1079

    Google Scholar 

  • Ye X, Zhou X, Wong LY et al (2012) Concentrations of bisphenol A and seven other phenols in pooled sera from 3–11 year old children: 2001–2002 National Health and Nutrition Examination Survey. Environ Sci Technol 46(22):12664–12671

    Google Scholar 

  • Ye X, Zhou X, Hennings R et al (2013) Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge. Environ Health Perspect 121(3):283–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaddeus T. Schug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Schug, T.T., Birnbaum, L.S. (2014). Human Health Effects of Bisphenol A. In: Snedeker, S. (eds) Toxicants in Food Packaging and Household Plastics. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6500-2_1

Download citation

Publish with us

Policies and ethics