Skip to main content

Application of Ionic Liquids in the Conversion of Native Lignocellulosic Biomass to Biofuels

  • Chapter
  • First Online:
Biomass Conversion

Abstract

Ionic liquids have been actively studied for the pretreatment of lignocellulosic biomass due to their ability to dissolve various native biomasses at high temperatures ranging from 70 to 140°C in several hours. In this chapter, their application is reviewed and the delignification mechanism is investigated through microscopic, spectroscopic, and chemical analyses. The effects of various cation–anion combinations, viability of cellulases, and the recycling of ionic liquids will be discussed. In addition, recent advances in the application of ionic liquids at room temperature will be described. For example, poplar wood cell walls swell upon exposure to an ionic liquid at room temperature, and recover partially their original size upon addition of water. A process to incorporate materials/chemicals into the wood structure is designed based on the expansion and contraction of the biomass, which has applications such as improved pretreatment strategies, composites, and sensing capabilities using low-cost and biocompatible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d

    Article  Google Scholar 

  2. Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4:77–93. doi:10.1002/bbb.188

    Article  Google Scholar 

  3. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33. doi:10.1080/02773810701282330

    Article  Google Scholar 

  4. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69. doi:10.1039/b607614a

    Article  Google Scholar 

  5. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  6. Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182. doi:10.1039/b711512a

    Article  Google Scholar 

  7. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148. doi:10.1021/jf071692e

    Article  Google Scholar 

  8. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910. doi:10.1002/bit.21047

    Article  Google Scholar 

  9. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975. doi:10.1021/ja025790m

    Article  Google Scholar 

  10. Dadi AP, Schall CA, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 136–140:407–422. doi:10.1007/s12010-007-9068-9

    Article  Google Scholar 

  11. Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349:1847–1850. doi:10.1002/adsc.200700259

    Article  Google Scholar 

  12. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164. doi:10.1039/b103275p

    Article  Google Scholar 

  13. Castner EW Jr, Wishart JF (2010) Spotlight on ionic liquids. J Chem Phys 132:120901. doi:10.1063/1.3373178

    Article  Google Scholar 

  14. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. doi:10.1021/cr9001947

    Article  Google Scholar 

  15. Castiglione F, Raos G, Appetecchi GB, Montanino M, Passerini S, Moreno M, Famulari A, Mele A (2010) Blending ionic liquids: how physico-chemical properties change. Phys Chem Chem Phys 12:1784–1792. doi:10.1039/b921816e

    Article  Google Scholar 

  16. Xie H, Shi T (2010) Liquefaction of wood (Metasequoia glyptostroboides) in allyl alkyl imidazolium ionic liquids. Wood Sci Technol 44:119–128. doi:10.1007/s00226-009-0273-2

    Article  Google Scholar 

  17. Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee SG (2010) Toward understanding the origin of positive effects of ionic liquids on catalysis: Formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc Chem Res 43:985–994. doi:10.1021/ar9002202

    Article  Google Scholar 

  18. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477. doi:10.1016/j.ccr.2004.04.015

    Article  Google Scholar 

  19. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071–2084. doi:10.1021/cr980032t

    Article  Google Scholar 

  20. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Part 2. Chem Rev 111:3508–3576. doi:10.1021/cr1003248

    Article  Google Scholar 

  21. Joglekar HG, Rahman I, Kulkarni BD (2007) The path ahead for ionic liquids. Chem Eng Technol 30:819–828. doi:10.1002/ceat.200600287

    Article  Google Scholar 

  22. Tan HT, Lee KT, Mohamed AR (2011) Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: an optimisation study using response surface methodology. Carbohydr Polym 83:1862–1868. doi:10.1016/j.carbpol.2010.10.052

    Article  Google Scholar 

  23. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108:6300–6305. doi:10.1073/pnas.1009252108

    Article  Google Scholar 

  24. Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19:245–254. doi:10.1016/j.indcrop.2003.10.006

    Article  Google Scholar 

  25. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2008) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. doi:10.1002/bit.22179

    Article  Google Scholar 

  26. Vanoye L, Fanselow M, Holbrey JD, Atkins MP, Seddon KR (2009) Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem 11:390–396. doi:10.1039/b817882h

    Article  Google Scholar 

  27. Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922. doi:10.1021/jf903616y

    Article  Google Scholar 

  28. Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33:1122–1130. doi:10.1016/j.biombioe.2009.03.006

    Article  Google Scholar 

  29. Jiang N, Pu Y, Samuel R, Ragauskas AJ (2009) Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls. Green Chem 11:1762–1766. doi:10.1039/b913609f

    Article  Google Scholar 

  30. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  31. Li B, Asikkala J, Filpponen I, Argyropoulos DS (2010) Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res 49:2477–2484. doi:10.1021/ie901560p

    Article  Google Scholar 

  32. Li B, Filpponen I, Argyropoulos DS (2010) Acidolysis of wood in ionic liquids. Ind Eng Chem Res 49:3126–3136. doi:10.1021/ie1000983

    Article  Google Scholar 

  33. Zoia L, King AWT, Argyropoulos DS (2011) Molecular weight distributions and linkages in lignocellulosic materials derivatized from ionic liquid media. J Agric Food Chem 59:829–838. doi:10.1021/jf103615e

    Article  Google Scholar 

  34. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. doi:10.1016/j.biortech.2008.11.052

    Article  Google Scholar 

  35. Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101:1111–1114. doi:10.1016/j.biortech.2009.09.010

    Article  Google Scholar 

  36. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. doi:10.1039/b822702k

    Article  Google Scholar 

  37. Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679. doi:10.1039/b918787a

    Article  Google Scholar 

  38. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967–1975. doi:10.1039/c0gc00206b

    Article  Google Scholar 

  39. Garcia H, Ferreira R, Petkovic M, Ferguson JL, Leitão MC, Gunaratne HQN, Seddon KR, Rebelo LPN, Pereira CS (2010) Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem 12:367–369. doi:10.1039/b922553f

    Article  Google Scholar 

  40. Qu C, Kishimoto T, Kishino M, Hamada M, Nakajima N (2011) Heteronuclear single-quantum coherence nuclear magnetic resonance (HSQC NMR) characterization of acetylated fir (Abies sachallnensis MAST) wood regenerated from ionic liquid. J Agric Food Chem 59:5382–5389. doi:10.1021/jf200498n

    Article  Google Scholar 

  41. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. doi:10.1016/j.biortech.2009.10.066

    Article  Google Scholar 

  42. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75. doi:10.1002/bit.22386

    Article  Google Scholar 

  43. Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2010) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108:511–520. doi:10.1002/bit.23014

    Article  Google Scholar 

  44. Li Q, Jiang X, He Y, Li L, Xian M, Yang J (2010) Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl Microbiol Biotechnol 87:117–126. doi:10.1007/s00253-010-2484-8

    Article  Google Scholar 

  45. Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM (2010) Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenerg Res 3:123–133. doi:10.1007/s12155-010-9091-5

    Article  Google Scholar 

  46. Nguyen TAD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Park JC, Sim SJ (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438. doi:10.1016/j.biortech.2010.04.053

    Article  Google Scholar 

  47. van Spronsen J, Tavares Cardoso MA, Witkamp GJ, de Jong W, Kroon MC (2011) Separation and recovery of the constituents from lignocellulosic biomass by using ionic liquids and acetic acid as co-solvents for mild hydrolysis. Chem Eng Process 50:196–199. doi:10.1016/j.cep.2010.12.010

    Google Scholar 

  48. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345. doi:10.1039/b815310h

    Article  Google Scholar 

  49. Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301. doi:10.1021/jp9117437

    Article  Google Scholar 

  50. Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S (2010) Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenerg Res 3:134–145. doi:10.1007/s12155-010-9087-1

    Article  Google Scholar 

  51. Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228. doi:10.1021/jp1024203

    Article  Google Scholar 

  52. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194. doi:10.1021/bm801430x

    Article  Google Scholar 

  53. Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin I, Agrawal PK, Jones CW (2009) Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res 48:1277–1286. doi:10.1021/ie801174x

    Article  Google Scholar 

  54. Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275. doi:10.1039/b916882f

    Article  Google Scholar 

  55. Sun N, Jiang X, Maxim ML, Metlen A, Rogers RD (2011) Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem 4:65–73. doi:10.1002/cssc.201000272

    Article  MATH  Google Scholar 

  56. Mikkola JP, Kirilin A, Tuuf JC, Pranovich A, Holmbom B, Kustov LM, Murzin YD, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9:1229–1237. doi:10.1039/b708533h

    Article  Google Scholar 

  57. Ikeda T, Holtman K, Kadla JF, Chang HM, Jameel H (2002) Studies on the effect of ball milling on lignin structure using a modified DFRC method. J Agric Food Chem 50:129–135. doi:10.1021/jf010870f

    Article  Google Scholar 

  58. Nishi N, Kawakami T, Shigematsu F, Yamamoto M, Kakiuchi T (2006) Fluorine-free and hydrophobic room-temperature ionic liquids, tetraalkylammonium bis(2-ethylhexyl)sulfosuccinates, and their ionic liquid–water two-phase properties. Green Chem 8:349–355. doi:10.1039/b511529a

    Article  Google Scholar 

  59. Di Francesco F, Calisi N, Creatini M, Melai B, Salvo P, Chiappe C (2011) Water sorption by anhydrous ionic liquids. Green Chem 13:1712–1717. doi:10.1039/c1gc15080d

    Article  Google Scholar 

  60. Scammells PJ, Scott JL, Singer RD (2005) Ionic liquids: the neglected issues. Aust J Chem 58:155–169. doi:10.1071/CH04272

    Article  Google Scholar 

  61. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424. doi:10.1039/b818061j

    Article  Google Scholar 

  62. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci U S A 107:4516–4521. doi:10.1073/pnas.0912073107

    Article  Google Scholar 

  63. Tran CD, De Paoli Lacerda SH, Oliveira D (2003) Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water. Appl Spectrosc 57:152–157. doi:10.1366/000370203321535051

    Google Scholar 

  64. Wang Y, Li H, Han S (2006) A theoretical investigation of the interactions between water molecules and ionic liquids. J Phys Chem B 110:24646–24651. doi:10.1021/jp064134w

    Article  Google Scholar 

  65. Chapeaux A, Simoni LD, Stadtherr MA, Brennecke JF (2007) Liquid phase behavior of ionic liquids with water and 1-octanol and modeling of 1-octanol/water partition coefficients. J Chem Eng Data 52:2462–2467. doi:10.1021/je7003935

    Article  Google Scholar 

  66. Freire MG, Carvalho PJ, Gardas RL, Marrucho IM, Santos LMNBF, Coutinho JAP (2008) Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids. J Phys Chem B 112:1604–1610. doi:10.1021/jp7097203

    Article  Google Scholar 

  67. Engel P, Mladenov R, Wulfhorst H, Jäger G, Spiess AC (2010) Point by point analysis: how ionic liquid affects the enzymatic hydrolysis of native and modified cellulose. Green Chem 12:1959–1966. doi:10.1039/c0gc00135j

    Article  Google Scholar 

  68. Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287. doi:10.1351/pac200072122275

    Article  Google Scholar 

  69. Zhang Y, Du H, Qian X, Chen EYX (2010) Ionic liquid-water mixtures: enhanced K w for efficient cellulosic biomass conversion. Energy Fuels 24:2410–2417. doi:10.1021/ef1000198

    Article  Google Scholar 

  70. Lucas M, Macdonald BA, Wagner GL, Joyce SA, Rector KD (2010) Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles. ACS Appl Mater Interfaces 2:2198–2205. doi:10.1021/am100371q

    Article  Google Scholar 

  71. Lucas M, Wagner GL, Nishiyama Y, Hanson L, Samayam IP, Schall CA, Langan P, Rector KD (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102:4518–4523. doi:10.1016/j.biortech.2010.12.087

    Article  Google Scholar 

  72. Bharadwaj R, Wong A, Knierim B, Singh S, Holmes BM, Auer M, Simmons BA, Adams PD, Singh AK (2011) High-throughput enzymatic hydrolysis of lignocellulosic biomass via in situ regeneration. Bioresour Technol 102:1329–1337. doi:10.1016/j.biortech.2010.08.108

    Article  Google Scholar 

  73. Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941. doi:10.1021/bm101240z

    Article  Google Scholar 

  74. Sun L, Simmons BA, Singh S (2011) Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging. Biotechnol Bioeng 108:286–295. doi:10.1002/bit.22931

    Article  Google Scholar 

  75. Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Cleaving the β–O–4 bonds of lignin model compounds in an acidic ionic liquid, 1-h-3-methylimidazolium chloride: An optional strategy for the degradation of lignin. ChemSusChem 3:1078–1084. doi:10.1002/cssc.201000112

    Article  Google Scholar 

  76. Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2011) Hydrolytic cleavage of β–O–4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res 50:849–855. doi:10.1021/ie101884h

    Article  Google Scholar 

  77. Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion–cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed 49:449–453. doi:10.1002/anie.200905437

    Article  Google Scholar 

  78. Kline LM, Hayes DG, Womac AR, Labbé N (2010) Simplified determination of lignin content in hard and soft woods via UV-spectrophotometric analysis of biomass dissolved in ionic liquids. BioResources 5:1366–1383

    Google Scholar 

  79. Kiefer J, Obert K, Fries J, Bösmann A, Wasserscheid P, Leipertz A (2009) Determination of glucose and cellobiose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate using Fourier transform infrared spectroscopy. Appl Spectrosc 63:1041–1049. doi:10.1366/000370209789379367

    Article  Google Scholar 

  80. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  Google Scholar 

  81. Rivers DB, Gracheck SJ, Woodford LC, Emert GH (1984) Limitations of the DNS assay for reducing sugars from saccharified lignocellulosics. Biotechnol Bioeng 26:800–802. doi:10.1002/bit.260260727

    Article  Google Scholar 

  82. Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324. doi:10.1016/j.tetlet.2008.10.052

    Article  Google Scholar 

  83. King AWT, Zoia L, Filpponen I, Olszewska A, Xie H, Kilpeläinen I, Argyropoulos DS (2009) In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using 31P NMR. J Agric Food Chem 57:8236–8243. doi:10.1021/jf901095w

    Article  Google Scholar 

  84. Remsing RC, Swatloski RP, Rogers R, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 2006:1271–1273. doi:10.1039/b600586c

    Article  Google Scholar 

  85. Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in [EMIM][OAc] aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947. doi:10.1039/b920446f

    Article  Google Scholar 

  86. Kahlen J, Masuch K, Leonhard K (2010) Modelling cellulose solubilities in ionic liquids using COSMO-RS. Green Chem 12:2172–2181. doi:10.1039/c0gc00200c

    Article  Google Scholar 

  87. Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46. doi:10.1039/b713289a

    Article  Google Scholar 

  88. Dwiatmoko AA, Choi JW, Suh DJ, Suh YW, Kung HH (2010) Understanding the role of halogen-containing ionic liquids in the hydrolysis of cellobiose catalyzed by acid resins. Appl Catal A Gen 387:209–214. doi:10.1016/j.apcata.2010.08.032

    Article  Google Scholar 

  89. Rinaldi R, Meine N, vom Stein J, Palkovits R, Schüth F (2010) Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem 3:266–276. doi:10.1002/cssc.200900281

  90. Cuissinat C, Navard P, Heinze T (2008) Swelling and dissolution of cellulose. Part IV: free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 72:590–596. doi:10.1016/j.carbpol.2007.09.029

    Article  Google Scholar 

  91. Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54. doi:10.1016/j.jbiotec.2008.08.009

    Article  Google Scholar 

  92. Guo J, Zhang D, Duan C, Liu C (2010) Probing anion–cellulose interactions in imidazolium-based room temperature ionic liquids: a density functional study. Carbohydr Res 345:2201–2205. doi:10.1016/j.carres.2010.07.036

    Article  Google Scholar 

  93. Armstrong DW, He L, Liu YS (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3873–3876. doi:10.1021/ac990443p

    Article  Google Scholar 

  94. Abraham MH (1993) Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev 22:73–83. doi:10.1039/CS9932200073

    Article  Google Scholar 

  95. Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfurals—a promising biomass-derived building block. Chem Rev 111:397–417. doi:10.1021/cr100171a

    Article  Google Scholar 

  96. Anderson JL, Ding J, Welton T, Armstrong DW (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254. doi:10.1021/ja028156h

    Article  Google Scholar 

  97. Carmichael AJ, Seddon KR (2000) Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J Phys Org Chem 13:591–595. doi:10.1002/1099-1395(200010)13:10<591:AID-POC305>3.0.CO;2-2

    Article  Google Scholar 

  98. Reichardt C (1965) Empirical parameters of the polarity of solvents. Angew Chem Int Ed Engl 4:29–40. doi:10.1002/anie.196500291

    Article  Google Scholar 

  99. Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi:10.1021/ic951325x

    Article  Google Scholar 

  100. Aki SVNK, Brennecke JF, Samanta A (2001) How polar are room-temperature ionic liquids? Chem Commun 2001:413–414. doi:10.1039/B008039J

    Article  Google Scholar 

  101. Muldoon MJ, Gordon CM, Dunkin IR (2001) Investigations of solvent–solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2(2001):433–435. doi:10.1039/B101449H

    Google Scholar 

  102. Kamlet MJ, Taft RW (1976) The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383. doi:10.1021/ja00418a009

    Article  Google Scholar 

  103. Taft RW, Kamlet MJ (1976) The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J Am Chem Soc 98:2886–2894. doi:10.1021/ja00426a036

    Article  Google Scholar 

  104. Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The π* scale of solvent polarities. J Am Chem Soc 99:6027–6038. doi:10.1021/ja00460a031

    Article  Google Scholar 

  105. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887. doi:10.1021/jo00165a018

    Article  Google Scholar 

  106. Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32. doi:10.1039/c0ee00246a

    Article  Google Scholar 

  107. Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T (2003) Solvent–solute interactions in ionic liquids. Phys Chem Chem Phys 5:2790–2794. doi:10.1039/b303095d

    Article  Google Scholar 

  108. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297. doi:10.1021/bm060327d

    Article  Google Scholar 

  109. Kralisch D, Stark A, Körsten S, Kreisel G, Ondruschka B (2005) Energetic, environmental and economic balances: spice up your ionic liquid research efficiency. Green Chem 7:301–309. doi:10.1039/b417167e

    Article  Google Scholar 

  110. Nicola Wood, Stephens G (2010) Accelerating the discovery of biocompatible ionic liquids. Phys Chem Chem Phys 12:1670–1674. doi:10.1039/b923429b

    Google Scholar 

  111. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637. doi:10.1039/b817717c

    Article  Google Scholar 

  112. Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189. doi:10.1039/b419172b

    Article  Google Scholar 

  113. Frade RFM, Matias A, Branco LC, Afonso CAM, Duarte CMM (2007) Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem 9:873–877. doi:10.1039/b617526k

    Article  Google Scholar 

  114. Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372. doi:10.1016/j.watres.2009.09.030

    Article  Google Scholar 

  115. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273. doi:10.1016/j.jhazmat.2007.10.079

    Article  Google Scholar 

  116. Nancharaiah YV, Francis AJ (2011) Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp. Bioresour Technol 102:6573–6578. doi:10.1016/j.biortech.2011.03.042

    Article  Google Scholar 

  117. Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82:625–638. doi:10.1007/s00253-009-1875-1

    Article  Google Scholar 

  118. Taechapoempol K, Sreethawong T, Rangsunvigit P, Namprohm W, Thamprajamchit B, Rengpipat S, Chavadej S (2011) Cellulase-producing bacteria from Thai higher termites, Microcerotermes sp.: enzymatic activities and ionic liquid tolerance. Appl Biochem Biotechnol 164:204–219. doi:10.1007/s12010-010-9128-4

    Article  Google Scholar 

  119. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848. doi:10.1016/j.biotechadv.2009.06.005

    Article  Google Scholar 

  120. Wang Y, Radosevich M, Hayes D, Labbé N (2011) Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 108:1042–1048. doi:10.1002/bit.23045

    Article  Google Scholar 

  121. Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5:443–447. doi:10.1039/b302570e

    Article  Google Scholar 

  122. Kamiya N, Matsushita Y, Hanaki M, Nakashima K, Narita M, Goto M, Takahashi H (2008) Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnol Lett 30:1037–1040. doi:10.1007/s10529-008-9638-0

    Article  Google Scholar 

  123. Salvador ÂC, da C. Santos M, Saraiva JA (2010) Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulose. Green Chem 12:632–635. doi:10.1039/b918879g

  124. Bose S, Armstrong DW, Petrich JW (2010) Enzyme-catalyzed hydrolysis of cellulose in ionic liquids: a green approach toward the production of biofuels. J Phys Chem B 114:8221–8227. doi:10.1021/jp9120518

    Article  Google Scholar 

  125. Adsul MG, Terwadkar AP, Varma AJ, Gokhale DV (2009) Cellulases from Penicillium Janthinellum mutants: solid-state production and their stability in ionic liquids. BioResources 4:1670–1681

    Google Scholar 

  126. Pottkämper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Ignatiev N, Streit WR (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957–965. doi:10.1039/b820157a

    Article  Google Scholar 

  127. Jäger G, Wulfhorst H, Zeithammel EU, Elinidou E, Spiess AC, Büchs J (2011) Screening of cellulases for biofuel production: online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol J 6:74–85. doi:10.1002/biot.201000387

    Article  Google Scholar 

  128. Zhou GP, Zhang Y, Huang XR, Shi CH, Liu WF, Li YZ, Qu YB, Gao PJ (2008) Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion. Colloids Surf B 66:146–149. doi:10.1016/j.colsurfb.2008.05.016

    Article  Google Scholar 

  129. Cui X, Zhang S, Shi F, Zhang Q, Ma X, Lu L, Deng Y (2010) The influence of the acidity of ionic liquids on catalysis. ChemSusChem 3:1043–1047. doi:10.1002/cssc.201000075

    Article  Google Scholar 

  130. Murao S, Nomura Y, Yoshikawa M, Shin T, Oyama H, Arai M (1992) Enhancement of activities of cellulases under high hydrostatic pressure. Biosci Biotechnol Biochem 56:1366–1367. doi:10.1271/bbb.56.1366

    Article  Google Scholar 

  131. Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345. doi:10.1039/b916564a

    Article  Google Scholar 

  132. Rees HC, Grant S, Jones B, Grant WD, Heaphy S (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7:415–421. doi:10.1007/s00792-003-0339-2

    Article  Google Scholar 

  133. Grant S, Sorokin DY, Grant WD, Jones B, Heaphy S (2004) A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8:421–429. doi:10.1007/s00792-004-0402-7

    Article  Google Scholar 

  134. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36. doi:10.1016/j.jbiotec.2006.02.011

    Article  Google Scholar 

  135. Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705. doi:10.1039/b801489b

    Article  Google Scholar 

  136. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85:891–907. doi:10.1002/jctb.2375

    Article  Google Scholar 

  137. Lozano P, Bernal B, Bernal JM, Pucheault M, Vaultier M (2011) Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride. Green Chem 13:1406–1410. doi:10.1039/c1gc15294g

    Article  Google Scholar 

  138. Righi S, Morfino A, Galletti P, Samorì C, Tugnoli A, Stramigioli C (2011) Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide. Green Chem 13:367–375. doi:10.1039/c0gc00647e

    Article  Google Scholar 

  139. Kralisch D, Reinhardt D, Kreisel G (2007) Implementing objectives of sustainability into ionic liquids research and development. Green Chem 9:1308–1318. doi:10.1039/b708721g

    Article  Google Scholar 

  140. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66. doi:10.1007/s10570-007-9160-x

    Article  Google Scholar 

  141. Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574. doi:10.1016/j.biortech.2008.11.044

    Article  Google Scholar 

  142. Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704. doi:10.1002/adma.200600442

    Article  Google Scholar 

  143. Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290. doi:10.1039/b713194a

    Article  Google Scholar 

  144. Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90. doi:10.1016/j.carbpol.2009.07.030

    Article  Google Scholar 

  145. Li L, Meng L, Zhang X, Fu C, Lu Q (2009) The ionic liquid-associated synthesis of a cellulose/SWCNT complex and its remarkable biocompatibility. J Mater Chem 19:3612–3617. doi:10.1039/b823322e

    Article  Google Scholar 

  146. Park TJ, Lee SH, Simmons TJ, Martin JG, Mousa SA, Snezhkova EA, Sarnatskaya VV, Nikolaev VG, Linhardt RJ (2008) Heparin–cellulose–charcoal composites for drug detoxification prepared using room temperature ionic liquids. Chem Commun 2008:5022–5024. doi:10.1039/b809791g

    Article  Google Scholar 

  147. Zhu J, Wang WT, Wang XL, Li B, Wang YZ (2009) Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid. Carbohydr Polym 76:139–144. doi:10.1016/j.carbpol.2008.10.004

    Article  Google Scholar 

  148. Hao Y, Peng J, Li J, Zhai M, Wei G (2009) An ionic liquid as reaction media for radiation-induced grafting of thermosensitive poly (N-isopropylacrylamide) onto microcrystalline cellulose. Carbohydr Polym 77:779–784. doi:10.1016/j.carbpol.2009.02.025

    Article  Google Scholar 

  149. Kadokawa J, Murakami M, Kaneko Y (2008) A facile method for preparation of composites composed of cellulose and a polystyrene-type polymeric ionic liquid using a polymerizable ionic liquid. Compos Sci Technol 68:493–498. doi:10.1016/j.compscitech.2007.06.004

    Article  Google Scholar 

  150. Egorov VM, Smirnova SV, Formanovsky AA, Pletnev IV, Zolotov YA (2007) Dissolution of cellulose in ionic liquids as a way to obtain test materials for metal-ion detection. Anal Bioanal Chem 387:2263–2269. doi:10.1007/s00216-006-1114-x

    Article  Google Scholar 

  151. Hines JH, Wanigasekara E, Rudkevich DM, Rogers RD (2008) Calix[4]arenes immobilized in a cellulose-based platform for entrapment and detection of NO x gases. J Mater Chem 18:4050–4055. doi:10.1039/b803289k

    Article  Google Scholar 

  152. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418. doi:10.1021/bm050837s

    Article  Google Scholar 

  153. Turner MB, Spear SK, Holbrey JD, Daly DT, Rogers RD (2005) Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules 6:2497–2501. doi:10.1021/bm050199d

    Article  Google Scholar 

  154. Bagheri M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Rogers RD (2008) Ionic liquid-based preparation of cellulose-dendrimer films as solid supports for enzyme immobilization. Biomacromolecules 9:381–387. doi:10.1021/bm701023w

    Article  Google Scholar 

  155. Erdmenger T, Haensch C, Hoogenboom R, Schubert US (2007) Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445. doi:10.1002/mabi.200600253

    Article  Google Scholar 

  156. Abbott AP, Bell TJ, Handa S, Stoddart B (2005) O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem 7:705–707. doi:10.1039/b511691k

    Article  Google Scholar 

  157. Cao Y, Wu J, Meng T, Zhang J, He J, Li H, Zhang Y (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym 69:665–672. doi:10.1016/j.carbpol.2007.02.001

    Article  Google Scholar 

  158. Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharides—2: cellulose. Macromol Symp 262:8–22. doi:10.1002/masy.200850202

    Article  Google Scholar 

  159. Qi X, Watanabe M, Aida TM, Smith R (2010) Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. ChemSusChem 3:1071–1077. doi:10.1002/cssc.201000124

    Article  Google Scholar 

  160. Kim B, Jeong J, Lee D, Kim S, Yoon HJ, Lee YS, Cho JK (2011) Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid. Green Chem 13:1503–1506. doi:10.1039/c1gc15152e

    Article  Google Scholar 

  161. Zhu Y, Kong ZN, Stubbs LP, Lin H, Shen S, Anslyn EV, Maguire JA (2010) Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent. ChemSusChem 3:67–70. doi:10.1002/cssc.200900235

    Article  Google Scholar 

  162. Taccardi N, Assenbaum D, Berger MEM, Bösmann A, Enzenberger F, Wölfel R, Neuendorf S, Goeke V, Schödel N, Maass HJ, Kistenmacher H, Wasserscheid P (2010) Catalytic production of hydrogen from glucose and other carbohydrates under exceptionally mild reaction conditions. Green Chem 12:1150–1156. doi:10.1039/c002910f

    Article  Google Scholar 

  163. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985. doi:10.1021/ja808537j

    Article  Google Scholar 

  164. Lee JW, Ha MG, Yi YB, Chung CH (2011) Chromium halides mediated production of hydroxymethylfurfural from starch-rich acorn biomass in an acidic ionic liquid. Carbohydr Res 346:177–182. doi:10.1016/j.carres.2010.11.009

    Article  Google Scholar 

  165. Yuan TQ, Sun SN, Xu F, Sun RC (2010) Homogeneous esterification of poplar wood in an ionic liquid under mild conditions: characterization and properties. J Agric Food Chem 58:11302–11310. doi:10.1021/jf103050t

    Article  Google Scholar 

  166. Yuan T, Sun S, Xu F, Sun R (2011) Homogeneous butyrylation and lauroylation of poplar wood in the ionic liquid 1-butyl-3-methylimidazolium chloride. Bioresour Technol 102:4590–4593. doi:10.1016/j.biortech.2010.12.102

    Article  Google Scholar 

  167. Xie H, Jarvi P, Karesoja M, King A, Kilpelainen I, Argyropoulos DS (2009) Highly compatible wood thermoplastic composites from lignocellulosic material modified in ionic liquids: preparation and thermal properties. J Appl Polym Sci 111:2468–2476. doi:10.1002/app.29251

    Article  Google Scholar 

  168. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129. doi:10.1016/j.carbpol.2008.07.008

    Article  Google Scholar 

  169. Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers RD (2011) Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem 13:1158–1161. doi:10.1039/c1gc15033b

    Article  Google Scholar 

  170. Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7:606–608. doi:10.1039/b502547h

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by a Laboratory Directed Research and Development grant from Los Alamos National Laboratory (20080001DR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk D. Rector .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucas, M., Wagner, G.L., Rector, K.D. (2012). Application of Ionic Liquids in the Conversion of Native Lignocellulosic Biomass to Biofuels. In: Baskar, C., Baskar, S., Dhillon, R. (eds) Biomass Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28418-2_4

Download citation

Publish with us

Policies and ethics