Skip to main content

Functional Foods: Genetics, Metabolome, and Engineering Phytonutrient Levels

  • Reference work entry
  • First Online:
Natural Products

Abstract

Phytonutrients in fruits and vegetables or their individual components (nutraceuticals) positively contribute to human health. Mostly, these nutrients have antioxidative property that impacts redox imbalance and can lead to prevention of cancer, cardiovascular diseases, diabetes, osteoporosis, and age-related disorders such as dementia. Over 7,000 flavonoids (and phenolic compounds) and 600 naturally occurring carotenoids seemingly with health benefits have been documented in plants. Fruits and vegetables are dietary sources of pro-health nutrients (nutraceuticals); however, the level of an individual antioxidant is low in the currently used germplasm, thus limiting them in meeting the recommended daily allowance (RDA). Nonetheless, the awareness about their health benefits has increased the global demand for and consumption of fruits and vegetables. Advanced molecular breeding and genetic engineering approaches are providing novel tools to greatly increase the levels of many desirable nutraceuticals, which is being made easier because their metabolic pathways are now known. The biotechnological interventions have already allowed severalfold increases in the content of flavonoids and carotenoids in fruit crops and essential fatty acids in oil crops. This chapter gives an overview of three classes of phytonutrients – flavonoids, carotenoids, and essential fatty acids, their dietary sources, metabolic pathways, and important genes/enzymes involved in their production. Several examples of the biotechnological intervention to boost endogenous levels of phytonutrients in various crop plants are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ACP:

Acyl carrier protein

CVD:

Cardiovascular disease

DHA:

Docosahexaenoic acid (C22:6n-3)

DW:

Dry weight

EPA:

Eicosapentaenoic acid (C20:5n-3)

FW:

Fresh weight

GLA:

ω-6 γ-linolenic acid

LDL:

Low-density lipoprotein

PA:

Proanthocyanidin

PUFA:

Polyunsaturated fatty acids

RDA:

Recommended daily allowance

SDA:

Stearidonic acid (C18:4n-3)

UV-B:

Ultraviolet-B radiation

References

  1. Lock K, Pomerleau J, Causer L, Altmann DR, McKee M (2005) The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy on diet. Bull World Health Organ 83:100–108

    Google Scholar 

  2. Fjeld CR, Lawson RH (1999) Food, phytonutrients, and health. Nutr Revs 57:S1–S2

    Article  CAS  Google Scholar 

  3. Basu A, Imrhan V (2007) Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr 61:295–303

    Article  CAS  Google Scholar 

  4. Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Revs Food Sci Nutr 50:728–760

    Article  CAS  Google Scholar 

  5. Beecher GR (1999) Phytonutrients role in metabolism: effects on resistance to degenerative processes. Nutr Revs 57:S3–S6

    Article  CAS  Google Scholar 

  6. Dixon J, Hewett EW (2000) Factors affecting apple aroma/flavour volatile concentration: a review. New Zeal J Crop Hort 28:155–173

    Article  CAS  Google Scholar 

  7. Cook MS (2010) Phyto power in the fight against disease. In: Cook MS (ed) The phytozyme cure: treat or reverse more than 30 serious health conditions with powerful plant nutrients. Wiley, Mississauga, pp 11–36

    Google Scholar 

  8. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutrition 22:19–34

    Article  CAS  Google Scholar 

  9. Shukla V, Mattoo AK (2010) Potential for engineering horticultural crops with high antioxidant capacity. CAB Revs 4(066):1–22. doi:10.1079/PAVSNNR20094066

    Google Scholar 

  10. Liu YS, Roof S, Ye ZB, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci 101:9897–9902

    Article  CAS  Google Scholar 

  11. Kaplan M (2007) Fruit proves better than vitamin C alone. news@nature.com, April 20 2007, doi:10.1038/news070416-15

    Google Scholar 

  12. Guarnieri S, Riso P, Porrini M (2007) Orange juice versus vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Brit J Nutri 97:639–643

    Article  CAS  Google Scholar 

  13. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotech 23:482–487

    Article  CAS  Google Scholar 

  14. Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM et al (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 200315:3007–3019

    Google Scholar 

  15. Tavva VS, Kim YH, Kagan IA, Dinkins RD, Kim KH, Collins GB (2007) Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens α-tocopherol methyltransferase gene. Plant Cell Rept 26:61–70

    Article  CAS  Google Scholar 

  16. Cho EA, Lee CA, Kim YS, Baek SH, De Los Reyes B, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). Molecules Cells 19:16–22

    CAS  Google Scholar 

  17. Kim YJ, Seo HY, Park TI, Baek SH, ShinWC KHS, Kim JG, Choi YE, Yun SJ (2005) Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene. J Plant Biotechnol 7:1–7

    Google Scholar 

  18. Yusuf MA, Sarin N-B (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res 16:109–113

    Article  CAS  Google Scholar 

  19. Crowell EF, McGrath JM, Douches DS (2008) Accumulation of vitamin E in potato (Solanum tuberosum) tubers. Transgenic Res 17:205–217

    Article  CAS  Google Scholar 

  20. Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breeding 6:73–78

    Article  CAS  Google Scholar 

  21. Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  CAS  Google Scholar 

  22. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez CD, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Article  CAS  Google Scholar 

  23. Diaz de la Garza R, Quinilivan EP, Klaus SMJ, Basset GJC, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci USA 101:13720–13725

    Article  CAS  Google Scholar 

  24. Diaz de la Garza RI, Gregory JF III, Hanson AH (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 104:4218–4222

    Article  CAS  Google Scholar 

  25. Nunes ACS, Kalkmann DC, Aragão FJL (2009) Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res 18:661–667. doi:10.1007/s11248-009-9256-1

    Article  CAS  Google Scholar 

  26. Fatima T, Rivera-Dominguez M, Troncoso-Rojas R, Tiznado-Hernandez MR, Handa AK, Mattoo AK (2008) Tomato. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 6, Transgenic Vegetable Crops. Wiley-Blackwell, Chichester, pp 1–45

    Google Scholar 

  27. Robards K, Antolovich M (1997) Analytical chemistry of fruit bioflavonoids – a review. Analyst 122:11R–34R

    Article  CAS  Google Scholar 

  28. Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  29. Harborne JB, Herbert B (1999) The handbook of natural flavonoids. Wiley, Chichester

    Google Scholar 

  30. Andersen ØM, Markham KR (2006) Flavonoids: chemistry, biochemistry, and applications. CRC Taylor & Francis, Boca Raton, Florida

    Google Scholar 

  31. Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  CAS  Google Scholar 

  32. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  33. U.S. Department of Agriculture (2003) USDA database for the flavonoid content of selected foods. March 2003

    Google Scholar 

  34. Henning SM, Fajardo-Lira C, Lee HW, Youssefian AA, Go VL, Heber D (2003) Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutr Cancer 45:226–235

    Article  CAS  Google Scholar 

  35. Shapiro DK, Garanovich IM, Anikhimovskaya LV, Narizhnaya TI (1978) Biochemical and morphological characteristics of promising forms of common sea buckthorn. Rastit Resur 14:560–564

    CAS  Google Scholar 

  36. Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279

    Article  CAS  Google Scholar 

  37. Yang B, Halttunen T, Raimo O, Price K, Kallio H (2009) Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chem 115:657–664

    Article  CAS  Google Scholar 

  38. Booij-James IS, Dube SK, Jansen MAK, Edelman M, Mattoo AK (2000) Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124:1275–1283

    Article  CAS  Google Scholar 

  39. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  Google Scholar 

  40. De Bruyne T, Pieters L, Deelstra H, Vlietinck A (1999) Condensed vegetable tannins: biodiversity in structure and biological activities. Biochem Syst Ecol 27:445–459

    Article  Google Scholar 

  41. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    Article  CAS  Google Scholar 

  42. Marles MAS, Ray H, Gruber MY (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–383

    Article  CAS  Google Scholar 

  43. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52:255–260

    Article  CAS  Google Scholar 

  44. Amiot MJ, Tacchini M, Aubert S, Nicolas J (1992) Phenolic composition and browning susceptibility of various apple cultivars at maturity. J Food Sci 57:958–962

    Article  CAS  Google Scholar 

  45. Goupy P, Amiot MJ, Richard-Forget F, Duprat F, Aubert S, Nicolas J (1995) Enzymatic browning of model solutions and apple phenolic extracts by apple polyphenoloxidase. J Food Sci 60:497–501

    Article  CAS  Google Scholar 

  46. Solovchenko A, Schmitz-Eiberger M (2003) Significance of skin flavonoids for UV-B-protection in apple fruits. J Exp Bot 54:1977–1984

    Article  CAS  Google Scholar 

  47. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  Google Scholar 

  48. Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–414

    Article  CAS  Google Scholar 

  49. Wilson MF, Whelan CJ (1990) The evolution of fruit color in fleshy-fruited plants. Am Nat 136:790–809

    Article  Google Scholar 

  50. Sanoner P, Guyot S, Marnet N, Molle D, Drilleau JP (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp). J Agric Food Chem 47:4847–4853

    Article  CAS  Google Scholar 

  51. Tohge T et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  CAS  Google Scholar 

  52. Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K (2007) Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Appl Chem 79:811–823

    Article  CAS  Google Scholar 

  53. Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211

    Article  CAS  Google Scholar 

  54. Luo J, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326

    Article  CAS  Google Scholar 

  55. Stracke R, Ishihara H, Barsch GHA, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677. doi:10.1111/j.1365-313X.2007.03078.x

    Article  CAS  Google Scholar 

  56. Yonekura-Sakakibara K, Tohge T, Niida R, Saito K (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282:14932–14941. doi:10.1074/jbc.M611498200

    Article  CAS  Google Scholar 

  57. Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/ mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  CAS  Google Scholar 

  58. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J 2:1214–1234

    Article  CAS  Google Scholar 

  59. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S et al (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 32:D438–D442

    Article  CAS  Google Scholar 

  60. Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants: purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656

    Article  CAS  Google Scholar 

  61. Tanaka Y, Filippa B (2006) Flower color. In: Ainsworth C (ed) Flowering and its manipulation, vol 20. Blackwell, London, pp 201–239

    Google Scholar 

  62. Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  CAS  Google Scholar 

  63. Schijlen E, Ric de Vos CH, Jonker H, van den Broeck H, Molthoff J, van Tunen A et al (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444

    Article  CAS  Google Scholar 

  64. Lunkenbein S, Coiner H, Ric de Vos CH, Schaart JC, Boone MJ, Krens FA et al (2006) Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). J Agric Food Chem 54:2145–2153

    Article  CAS  Google Scholar 

  65. Lorenc-Kukula K, Amarowicz R, Oszmianski J, Doermann P, Starzycki M, Skala J, Żuk M, Kulma A, Szopa J (2005) Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J Agric Food Chem 53:3685–3692

    Article  CAS  Google Scholar 

  66. D’Introno A, Paradiso A, Scoditti E, D’Amico L, De Paolis A, Carluccio MA, Nicoletti I, DeGara L, Santino A, Giovinazzo G (2009) Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnol J 7:422–429

    Article  CAS  Google Scholar 

  67. Giovinazzo G, D’Amico L, Paradiso A, Bollini R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57–69

    Article  CAS  Google Scholar 

  68. Rühmann S, Treutter D, Fritsche S, Briviba K, Szankowski I (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54:4633–4640

    Article  CAS  Google Scholar 

  69. Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Karenlampi S, Aharoni A (2008) Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria x ananassa) flowers. Phytochemistry 69:2463–2481. doi:10.1016/j.phytochem.2008.07.009

    Article  CAS  Google Scholar 

  70. Shih CH, Chen Y, Wang M, Chu IK, Lo C (2008) Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. J Agric Food Chem 56:5655–5661

    Article  CAS  Google Scholar 

  71. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CHR, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  Google Scholar 

  72. Lucaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52:1526–1533

    Article  CAS  Google Scholar 

  73. Li H, Flachowsky H, Fischer T, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh). Planta 226:1243–1254

    Article  CAS  Google Scholar 

  74. Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, K-i K (2007) The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J 49:91–102

    Article  CAS  Google Scholar 

  75. Gong Z-Z, Yamagishi E, Yamazaki M, Saito K (1999) A constitutively expressed Myc-like gene involved in anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol Biol 41:33–44

    Article  CAS  Google Scholar 

  76. Mooney M, Desnos T, Harrison K, Jones J, Carpenter R, Coen E (1995) Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant J 7:333–339

    Article  CAS  Google Scholar 

  77. Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  Google Scholar 

  78. Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos RCH, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5:e1000777

    Article  CAS  Google Scholar 

  79. Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    Article  CAS  Google Scholar 

  80. Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  CAS  Google Scholar 

  81. Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095

    Article  CAS  Google Scholar 

  82. Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y (2008) Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J 55:89–103

    Article  CAS  Google Scholar 

  83. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstruction of multienzyme pathways in plants and microbes. Biotechnol J 2:1235–1249

    Article  CAS  Google Scholar 

  84. Zuk M, Kulma A, Dyminska L, Szoltysek K, Prescha A, Hanuza J, Szopa J (2011) Flavonoid engineering of flax potentiate its biotechnological application. BMC Biotechnol 11:10

    Article  CAS  Google Scholar 

  85. Crozier A, Lean MEJ, McDonald MS, Black C (1997) Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 45:590–595

    Article  CAS  Google Scholar 

  86. Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  87. Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    Article  CAS  Google Scholar 

  88. Ingrosso I, Bonsegna S, De Domenico S, Laddomada B, Blando F, Santino A, Giovinazzo G (2011) Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development. Plant Physiol Biochem 49:1092–1099

    Article  CAS  Google Scholar 

  89. Rotino GL, Perri E, Zottini M, Sommer H, Spena A (1997) Genetic engineering of parthenocarpic plants. Nat Biotechnol 15:1398–1401

    Article  CAS  Google Scholar 

  90. Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breeding 5:463–470

    Article  Google Scholar 

  91. Pandolfini T, Rotino G, Camerini S, Defez R, Spena A (2002) Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnol 2:1

    Article  Google Scholar 

  92. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances tomato nutritional quality. Nat Biotechnol 7:825–826

    Google Scholar 

  93. Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME (2003) Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem 51:2447–2456

    Article  CAS  Google Scholar 

  94. Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L, Levin I (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genetic 124:295–307

    Article  CAS  Google Scholar 

  95. International Agency for Research on Cancer (1998) IARC handbooks of cancer prevention: carotenoids. International Agency for Research on Cancer, Lyon

    Google Scholar 

  96. Institute of Medicine, Food and Nutrition Board (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy Press, Washington, DC, pp 325–400

    Google Scholar 

  97. van Het Hof KH, West CE, Weststrate JA, Hautvast JG (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503–506

    Google Scholar 

  98. Yeum KJ, Russell RM (2002) Carotenoid bioavailability and bioconversion. Annu Rev Nutr 22:483–504

    Article  CAS  Google Scholar 

  99. Gartner C, Stahl W, Sies H (1997) Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 66:116–122

    CAS  Google Scholar 

  100. Stahl W, Sies H (1992) Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato juice in humans. J Nutr 122:2161–2166

    CAS  Google Scholar 

  101. Handa AK, Anwar R, Mattoo AK (2013) Biotechnology of fruit quality. In: Nath P, Bouzayen M, Mattoo AK, Pech J-C (eds) Fruit ripening: physiology, signalling and genomics. CABI, Oxfordshire

    Google Scholar 

  102. Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genetic 45:41–59

    Article  CAS  Google Scholar 

  103. Rodríguez-Concepción M (2010) Supply of precursors for carotenoid biosynthesis in plants. Arch Biochem Biophys 504:118–122

    Article  CAS  Google Scholar 

  104. Bian W, Barsan C, Egea I, Purgatto E et al (2011) Metabolic and molecular events occurring during chromoplast biogenesis. J Botany. doi:10.1155/2011/289859

    Google Scholar 

  105. Edwards RA, Reuter FH (1967) Pigment changes during the maturation of tomato fruits. Food Technol Australia 19:352–357

    CAS  Google Scholar 

  106. Johjima T, Matsuzoe N (1995) Relationship between colour value and coloured carotenes content in fruit of various tomato cultivars and breeding lines. Acta Hort 412:152–159

    Google Scholar 

  107. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat Biotechnol 20:613–618

    Article  CAS  Google Scholar 

  108. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  Google Scholar 

  109. Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. Am Soc Nutr Sci 32:506S–510S

    Google Scholar 

  110. Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL (2006) NMR spectroscopy-based metabolite profiles of transgenic tomato fruit engineered to accumulate polyamines spermidine and spermine reveal enhanced anabolic and nitrogen-carbon interactions. Plant Physiol 142:1759–1770

    Article  CAS  Google Scholar 

  111. Enfissi EMA, Fraser PD, Lois L-M, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27

    Article  CAS  Google Scholar 

  112. Morris WL, Ducreux L, Griffiths DW, Stewart D, Davies HV et al (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982

    Article  CAS  Google Scholar 

  113. Fraser PD, Römer S, Shipton CA, Mills PM, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Biochemical evaluation of transgenic tomato plants expressing an addition phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092–1097

    Article  CAS  Google Scholar 

  114. Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    Article  Google Scholar 

  115. Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Article  CAS  Google Scholar 

  116. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56:81–89

    CAS  Google Scholar 

  117. Diretto G, Al-Babili S, Tavazza R, Papacchiolli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2:e350. doi:10.1371/journal.pone.0000350

    Article  CAS  Google Scholar 

  118. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermal S (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  CAS  Google Scholar 

  119. Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645

    Article  CAS  Google Scholar 

  120. Yu B, Lydiate D, Young L, Schäfer U, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573–585

    Article  CAS  Google Scholar 

  121. Fujisawa M, Watanabe M, Choi S-K, Teramoto M, Ohyama K, Misawa N (2008) Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J Biosci Bioeng 105:636–641

    Article  CAS  Google Scholar 

  122. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific over-expression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  CAS  Google Scholar 

  123. Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255–263

    Article  CAS  Google Scholar 

  124. Wei S, Li X, Gruber MY, Li R, Zhou R, Zebarjadi A, Hannoufa A (2009) RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. J Agric Food Chem 57:5326–5333

    Article  CAS  Google Scholar 

  125. Jayraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Article  CAS  Google Scholar 

  126. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  CAS  Google Scholar 

  127. D’Ambrosio G, Griorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214

    Article  CAS  Google Scholar 

  128. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta carotene and lycopene content in tomato fruit. Plant J 24:413–419

    Article  CAS  Google Scholar 

  129. Guo F, Zhou W, Zhang J, Xu Q, Deng X (2012) Effect of the citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits. PLoS One 7:e32221

    Article  CAS  Google Scholar 

  130. Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  CAS  Google Scholar 

  131. Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34

    Article  CAS  Google Scholar 

  132. Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P (2012) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J Exp Bot 63:3097–3108

    Article  CAS  Google Scholar 

  133. Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM et al (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high-levels of beta-carotene accumulation. Plant Cell 18:3594–3605

    Article  CAS  Google Scholar 

  134. Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O’Neill J, Li L (2008) Effect of the cauliflower OR transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213–223

    Article  CAS  Google Scholar 

  135. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847

    Article  CAS  Google Scholar 

  136. Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin Y-G, Saito T, Mori K, Asamizu E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252

    Article  CAS  Google Scholar 

  137. Bassie L, Zhu C, Romagosa I, Christou P, Capell T (2008) Transgenic wheat plants expressing an oat arginine decarboxylase cDNA exhibit increases in polyamine content in vegetative tissue and seeds. Mol Breeding 22:39–50

    Article  CAS  Google Scholar 

  138. Fujisawa M, Misawa N (2010) Enrichment of carotenoids in flaxseed by introducing a bacterial phytoene synthase gene. In: Fett-Neto AG (ed) Plant secondary metabolism engineering: methods and applications. Springer, New York, pp 201–211

    Chapter  Google Scholar 

  139. Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53:717–730

    Article  CAS  Google Scholar 

  140. Food and Nutrition Board, Institute of Medicine (2002) Dietary fats: total fat and fatty acids. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press, Washington DC, pp 422–541

    Google Scholar 

  141. Jalal F, Nesheim MC, Agus Z, Sanjur D, Habicht JP (1998) Serum retinol concentrations in children are affected by food sources of beta-carotene, fat intake, and anthelmintic drug treatment. Am J Clin Nutr 68:623–629

    CAS  Google Scholar 

  142. Christensen JH, Christensen MS, Dyerberg J, Schmidt EB (1999) Heart rate variability and fatty acid content of blood cell membranes: a dose response study with n-3 fatty acids. Am J Clin Nutr 70:331–337

    CAS  Google Scholar 

  143. Smuts CM, Huang M, Mundy D, Plasse T, Major S, Carlson SE (2003) A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol 101:469–479

    Article  CAS  Google Scholar 

  144. Reiffel JA, McDonald A (2006) Antiarrhythmic effects of omega-3 fatty acids. Am J Cardiol 98:50i–60i

    Article  CAS  Google Scholar 

  145. Tocher D (2009) Issues surrounding fish as a source of ω-3 long chain polyunsaturated fatty acids. Lipid Technol 21:13–16

    Article  CAS  Google Scholar 

  146. Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39:101–138

    Article  CAS  Google Scholar 

  147. Somerville C, Browse J (1991) Plant lipids: metabolism, mutants and membranes. Science 252:80–87

    Article  CAS  Google Scholar 

  148. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  Google Scholar 

  149. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  Google Scholar 

  150. Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68:1175–1184

    Article  CAS  Google Scholar 

  151. Ruiz-López N, Sayanova O, Napier JA, Haslam RP (2012) Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J Exp Bot 63:2397–2410

    Article  CAS  Google Scholar 

  152. Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and the acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923

    Article  CAS  Google Scholar 

  153. Yuan L, Knauf VC (1997) Modification of plant components. Curr Opin Biotechnol 8:227–233

    Article  CAS  Google Scholar 

  154. Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319

    Article  CAS  Google Scholar 

  155. Kinney AJ, Knowlton S (1998) Designer oils: the high oleic acid soybean. In: Roller S, Harlander S (eds) Genetic modification in the food industry. Blackie Academic and Professional, London, pp 193–213

    Chapter  Google Scholar 

  156. Dehesh K, Jones A, Knutzon DS, Voelker TA (1996) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9:167–172

    Article  CAS  Google Scholar 

  157. Ursin VM (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J Nutr 133:4271–4274

    CAS  Google Scholar 

  158. Arcadia Biosciences (2008) Arcadia Biosciences and Bioriginal Food and Science Corporation. Enter strategic alliance to market high GLA safflower oil. http://findarticles.com/p/articles/mi_m0EIN/is_/ai_n24320185 (February 22, 2008)

  159. Nykiforuk CL, Shewmaker C, Harry I et al (2011) High level accumulation of gamma linolenic acid (C18:3Δ6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Res 21:367–381

    Article  CAS  Google Scholar 

  160. Wakita Y, Otani M, Hamada T, Mori M, Iba K, Shimada T (2001) A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweet potato (Ipomoea batatas). Plant Cell Rept 20:244–249

    Article  CAS  Google Scholar 

  161. Domínguez T, Hernández ML, Pennycooke JC, Jiménez P, Martínez-Rivas JM, Sanz C, Stockinger EJ, Sánchez-Serrano JJ, Sanmartín M (2010) Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153:655–665

    Article  CAS  Google Scholar 

  162. Simkin AJ, Gaffé J, Alcaraz J-P, Carde J-P, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68:1545–1556

    Article  CAS  Google Scholar 

  163. Fineberg HV, Rowe S (1998) Improving public understanding: guidelines for communicating emerging science on nutrition, food safety and health. J Natl Cancer Inst 90:194–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autar K. Mattoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fatima, T., Handa, A.K., Mattoo, A.K. (2013). Functional Foods: Genetics, Metabolome, and Engineering Phytonutrient Levels. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_50

Download citation

Publish with us

Policies and ethics