Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Since its inception, the field of tissue engineering has sought to rebuild the complexity of normal tissues by seeding cells onto scaffolds to support the formation of new tissue. Recently, nanofibers have gained increasing attention because these biomaterials have unique properties and are able to interface with cells at the same scale as native extracellular matrix fibrils. New fabrication technologies provide novel ways to control the nanoscale structure and properties of biomaterials, which is advantageous in the engineering of tissues for in vitro study and in vivo applications in regenerative medicine. This chapter explores the properties of nanofiber biomaterials (diameters <500  nm) and examines the specific advantages relative to other scaffold materials. This includes nanofibers from biopolymers as well as synthetic polymers, with consideration of relative advantages and disadvantages. A range of fabrication strategies is discussed that span from fiber spinning techniques, to phase separation in bulk, to directed and self-assembly. Insight is provided as to how synthetic polymers and biopolymers are used to make these nanofibers and the specific molecular structures that impart the unique mechanical, electrical, chemical, and biological properties. Analysis of these nanofiber biomaterials requires characterization techniques that are able to probe at the nanometer, micrometer, and macroscales. Examples are provided using optical microscopy, electron microscopy, scanning probe microscopy, mechanical characterization, and as sessment of biocompatibility and biodegradation. Finally, nanofiber biomaterials have wide applications in tissue engineering; here we focus on representative examples in cardiac, musculoskeletal, ophthalmic, and neural tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

α-SMA:

α-smooth muscle actin

AFM:

atomic force microscopy

APC:

antigen-presenting cell

ASTM:

American Society for Testing and Materials

ATQD:

N-(4-aminophenyl)-N′-(4′-(3-triethoxysilyl-propyl-ureido)phenyl-1,4-quinonenediimine)

BDNF:

brain-derived neurotrophic factor

BFGF:

basic fibroblast growth factor

C-PANI:

conductive camphorsulfonic acid-doped emeraldine PANI

COLI:

collagen I

COLIV:

collagen IV

CS-PCL:

chitosan-graft-PCL

CS:

cross section

DAPI:

4′,6-diamidino-2-phenylindole

DC:

dendritic cell

DIC:

differential interference contrast

DMF:

dimethylformamide

DNA:

deoxyribonucleic acid

DRG:

dorsal root ganglion

ECM:

extracellular matrix

EDS:

energy-dispersive x-ray spectroscopy

ESC:

embryonic stem cell

FDA:

Food and Drug Administration

FIB:

fibrinogen

FITC:

fluorescein isothiocyanate

FN:

fibronectin

IF:

immunofluorescence

IKVAV-PA:

IKVAV polyacrylamide

IKVAV:

laminin derived self-assembling peptide

IL:

interleukin

IR:

infrared

LAM:

laminin

LSC:

limbal stem cells

MSC:

mesenchymal stem cell

NGF:

nerve growth factor

NSC:

neural stem cell

PA:

peptide amphiphile

PAA:

poly(acrylic acid)

PANI:

polyaniline

PBS:

phosphate buffered saline

PCL-G:

PCL-gelatin

PCL:

poly(ε-caprolactone)

PDMS:

polydimethylsiloxane

PEG:

polyethylene glycol

PEO:

poly(ethylene oxide)

PG:

proteoglycan

PGA:

poly(glycolic acid)

PGLA:

copolymer of PGA and PLLA

PIPAAm:

responsive poly(N-isopropylacrylamide)

PLA:

poly-ethylene oxide

PLA:

pulsed laser ablation

PLGA:

poly(lactic-co-glycolic) acid

PLLA:

poly(l-lactic) acid

PPy:

polypyrrole

PRR:

pattern recognition receptor

PVA:

polyvinyl alcohol

RCF:

rabbit corneal fibroblast

RGD:

Arg-Gly-Asp

RJS:

rotary jet spinning

RPC:

retinal progenitor cells

RT-PCR:

real-time polymerase chain reaction

SAM:

self-assembled monolayer

SD:

standard deviation

SEM:

scanning electron microscopy

SF:

silk fibroin

SIM:

structured illumination microscopy

SMA:

shape-memory alloy

STORM:

stochastic optical reconstruction microscopy

TEM:

transmission electron microscopy

TGF-β:

transforming growth factor

THF:

tetrahydrofuran

TNF-α:

tumor necrosis factor

hSKMC:

human skeletal muscle cell

iPSC:

induced pluripotent stem cell

References

  1. A. Alovskaya, T. Alekseeva, J.B. Phillips, V. King, R. Brown: Fibronectin, collagen, fibrin – Components of extracellular matrix for nerve regeneration, Top. Tissue Eng. 3, 1–26 (2007), Chap. 12, available online from http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol3/abstracts/alovskaya_chapter_01.pdf

    Google Scholar 

  2. P. Bruckner, M. van der Rest: Structure and function of cartilage collagens, Microsc. Res. Tech. 28(5), 378–384 (1994)

    Article  CAS  Google Scholar 

  3. J.S. Janicki, G.L. Brower: The role of myocardial fibrillar collagen in ventricular remodeling and function, J. Card. Fail. 8(6), S319–S325 (2002)

    Article  CAS  Google Scholar 

  4. K.E. Kadler, A. Hill, E.G. Canty-Laird: Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators, Curr. Opin. Cell Biol. 20(5), 495–501 (2008)

    Article  CAS  Google Scholar 

  5. K.E. Kadler, D.F. Holmes, J.A. Trotter, J.A. Chapman: Collagen fibril formation, Biochem. J. 316(1), 1–11 (1996)

    CAS  Google Scholar 

  6. A.J. Pope, G.B. Sands, B.H. Smaill, I.J. LeGrice: Three-dimensional transmural organization of perimysial collagen in the heart, Am. J. Physiol. Heart Circ. Physiol. 295(3), H1243–H1252 (2008)

    Article  CAS  Google Scholar 

  7. M. Bernfield, R. Kokenyesi, M. Kato, M.T. Hinkes, J. Spring, R.L. Gallo, E.J. Lose: Biology of the syndecans: A family of transmembrane heparan sulfate proteoglycans, Annu. Rev. Cell Biol. 8, 365–393 (1992)

    Article  CAS  Google Scholar 

  8. A. Woods, E.S. Oh, J.R. Couchman: Syndecan proteoglycans and cell adhesion, Matrix Biol. 17, 477–483 (1998)

    Article  CAS  Google Scholar 

  9. X. Lin: Functions of heparan sulfate proteoglycans in cell signaling during development, Development 131(24), 6009–6021 (2004)

    Article  CAS  Google Scholar 

  10. R. Raman, V. Sasisekharan, R. Sasisekharan: Structural insights into biological roles of protein-glycosaminoglycan interactions, Chem. Biol. 12(3), 267–277 (2005)

    Article  CAS  Google Scholar 

  11. L. Debelle, A.M. Tamburro: Elastin: Molecular description and function, Int. J. Biochem. Cell Biol. 31(2), 261–272 (1999)

    Article  CAS  Google Scholar 

  12. D.W. Urry, T. Hugel, M. Seitz, H.E. Gaub, L. Sheiba, J. Dea, J. Xu, T. Parker: Elastin: A representative ideal protein elastomer, Philos. Trans. R. Soc. B 357(1418), 169–184 (2002)

    Article  CAS  Google Scholar 

  13. J. Pedersen, M. Swartz: Mechanobiology in the third dimension, Ann. Biomed. Eng. 33(11), 1469–1490 (2005)

    Article  Google Scholar 

  14. H. Colognato, P.D. Yurchenco: Form and function: The laminin family of heterotrimers, Dev. Dynam. 218(2), 213–234 (2000)

    Article  CAS  Google Scholar 

  15. K.M. Malinda, H.K. Kleinman: The laminins, Int. J. Biochem. Cell Biol. 28(9), 957–959 (1996)

    Article  CAS  Google Scholar 

  16. Y. Mao, J.E. Schwarzbauer: Fibronectin fibrillogenesis, a cell-mediated matrix assembly process, Matrix Biol. 24(6), 389–399 (2005)

    Article  CAS  Google Scholar 

  17. L.G. Griffith, M.A. Swartz: Capturing complex 3D tissue physiology in vitro, Nat. Rev. Mol. Cell Biol. 7(3), 211–224 (2006)

    Article  CAS  Google Scholar 

  18. Q.P. Pham, U. Sharma, A.G. Mikos: Electrospinning of polymeric nanofibers for tissue engineering applications: A review, Tissue Eng. 12, 1197–1211 (2006)

    Article  CAS  Google Scholar 

  19. M. Li, Y. Guo, Y. Wei, A.G. MacDiarmid, P.I. Lelkes: Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials 27, 2705–2715 (2006)

    Article  CAS  Google Scholar 

  20. S.A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu, S. Mantero: Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering, Biomaterials 26(22), 4606–4615 (2005)

    Article  CAS  Google Scholar 

  21. W.J. Li, R.L. Mauck, J.A. Cooper, X. Yuan, R.S. Tuan: Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering, J. Biomech. 40(8), 1686–1693 (2007)

    Article  Google Scholar 

  22. J.S. Choi, S.J. Lee, G.J. Christ, A. Atala, J.J. Yoo: The influence of electrospun aligned poly(ε-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes, Biomaterials 29(19), 2899–2906 (2008)

    Article  CAS  Google Scholar 

  23. M.P. Prabhakaran, L. Ghasemi-Mobarakeh, S. Ramakrishna: Electrospun composite nanofibers for tissue regeneration, J. Nanosci. Nanotechnol. 11(4), 3039–3057 (2011)

    Article  CAS  Google Scholar 

  24. N.F. Huang, S. Patel, R.G. Thakar, J. Wu, B.S. Hsiao, B. Chu, R.J. Lee, S. Li: Myotube assembly on nanofibrous and micropatterned polymers, Nano Lett. 6(3), 537–542 (2006)

    Article  CAS  Google Scholar 

  25. X. Zong, H. Bien, C.Y. Chung, L. Yin, D. Fang, B.S. Hsiao, B. Chu, E. Entcheva: Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials 26, 5330–5338 (2005)

    Article  CAS  Google Scholar 

  26. M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker: Nanofiber assembly by rotary jet-spinning, Nano Lett. 10, 2257–2261 (2010)

    Article  CAS  Google Scholar 

  27. W.E. Teo, R. Inai, S. Ramakrishna: Technological advances in electrospinning of nanofibers, Sci. Technol. Adv. Mater. 12(1), 013002–013021 (2011)

    Article  CAS  Google Scholar 

  28. K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, K. Lozano: Electrospinning to forcespinning (TM), Mater. Today 13(11), 12–14 (2010)

    Article  CAS  Google Scholar 

  29. R.L. Dahlin, F.K. Kasper, A.G. Mikos: Polymeric nanofibers in tissue engineering, Tissue Eng. B 17(5), 349–364 (2011)

    Article  CAS  Google Scholar 

  30. P.X. Ma, R. Zhang: Synthetic nano-scale fibrous extracellular matrix, J. Biomed. Mater. Res. 46(1), 60–72 (1999)

    Article  CAS  Google Scholar 

  31. R. Zhang, P.X. Ma: Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures, J. Biomed. Mater. Res. 52(2), 430–438 (2000)

    Article  CAS  Google Scholar 

  32. L. He, B. Liu, G. Xipeng, G. Xie, S. Liao, D. Quan, D. Cai, J. Lu, S. Ramakrishna: Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering, Eur. Cell Mater. 18, 63–74 (2009)

    CAS  Google Scholar 

  33. X.T. Li, Y. Zhang, G.Q. Chen: Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials, Biomaterials 29(27), 3720–3728 (2008)

    Article  CAS  Google Scholar 

  34. X.H. Liu, P.X. Ma: Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds, Biomaterials 30(25), 4094–4103 (2009)

    Article  CAS  Google Scholar 

  35. J. Zhaoa, W. Hana, H. Chena, M. Tua, R. Zenga, Y. Shic, Z. Chab, C. Zhou: Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique, Carbohydr. Polym. 83(4), 1541–1546 (2011)

    Article  CAS  Google Scholar 

  36. D.F. Mosher, R.B. Johnson: In vitro formation of disulfide-bonded fibronectin multimers, J. Biol. Chem. 258(10), 6595–6601 (1983)

    CAS  Google Scholar 

  37. K. Sakai, T. Fujii, T. Hayashi: Cell-free formation of disulfide-bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition, J. Biochem. 115(3), 415–421 (1994)

    CAS  Google Scholar 

  38. W.C. Little, M.L. Smith, U. Ebneter, V. Vogel: Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage, Matrix Biol. 25(7), 451–461 (2008)

    Article  CAS  Google Scholar 

  39. A.W. Feinberg, K.K. Parker: Surface-initiated assembly of protein nanofabrics, Nano Lett. 6, 2184–2191 (2010)

    Article  CAS  Google Scholar 

  40. C.A. Hauser, S. Zhang: Designer self-assembling peptide nanofiber biological materials, Chem. Soc. Rev. 39(8), 2780–2790 (2010)

    Article  CAS  Google Scholar 

  41. N. Higashi, T. Koga: Self-assembled peptide nanofibers, Adv. Polym. Sci. 219, 27–68 (2008)

    CAS  Google Scholar 

  42. F. Gelain: Novel opportunities and challenges offered by nanobiomaterials in tissue engineering, Int. J. Nanomed. 3(4), 415–424 (2008)

    Article  CAS  Google Scholar 

  43. J.M. Holzwarth, P.X. Ma: 3D nanofibrous scaffolds for tissue engineering, J. Mater. Chem. 21(28), 10243–10251 (2011)

    Article  CAS  Google Scholar 

  44. R. Vasita, D.S. Katti: Nanofibers and their applications in tissue engineering, Int. J. Nanomed. 1(1), 15–30 (2006)

    Article  CAS  Google Scholar 

  45. H.A. Behanna, J.J. Donners, A.C. Gordon, S.I. Stupp: Coassembly of amphiphiles with opposite peptide polarities into nanofibers, J. Am. Chem. Soc. 127(4), 1193–2000 (2005)

    Article  CAS  Google Scholar 

  46. G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp: Selective differentiation of neural progenitor cells by high-epitope density nanofibers, Science 303(5662), 1352–1355 (2004)

    Article  CAS  Google Scholar 

  47. S.E. Paramonov, H.W. Jun, J.D. Hartgerink: Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing, J. Am. Chem. Soc. 128(22), 7291–7298 (2006)

    Article  CAS  Google Scholar 

  48. K.L. Niece, J.D. Hartgerink, J.J. Donners, S.I. Stupp: Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction, J. Am. Chem. Soc. 125(24), 7146–7147 (2003)

    Article  CAS  Google Scholar 

  49. J.D. Hartgerink, E. Beniash, S.I. Stupp: Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials, Proc. Natl. Acad. Sci. USA 99(8), 5133–5138 (2002)

    Article  CAS  Google Scholar 

  50. P. Hartgerink, D.P. Fessell, J.A. Jacobson, M.T. van Holsbeeck: Full- versus partial-thickness Achilles tendon tears: Sonographic accuracy and characterization in 26 cases with surgical correlation, Radiology 220(2), 406–412 (2001)

    CAS  Google Scholar 

  51. Y.S. Dagdas, A. Tombuloglu, A.B. Tekinay, A. Dana, M.O. Guler: Interfiber interactions alter the stiffness of gels formed by supramolecular self-assembled nanofibers, Soft Matter 7, 3524–3532 (2011)

    Article  CAS  Google Scholar 

  52. H.A. Lashuel, S.R. LaBrenz, L. Woo, L.C. Serpell, J.W. Kelly: Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly: Implications for amyloid fibril formation and materials science, J. Am. Chem. Soc. 122(22), 5262–5277 (2000)

    Article  CAS  Google Scholar 

  53. S. Patel, K. Kurpinski, R. Quigley, H. Gao, B.S. Hsiao, M.M. Poo, S. Li: Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance, Nano Lett. 7(7), 2122–2128 (2007)

    Article  CAS  Google Scholar 

  54. L.A. Smith, P.X. Ma: Nano-fibrous scaffolds for tissue engineering, Colloids Surf. B 39(3), 125–131 (2004)

    Article  CAS  Google Scholar 

  55. W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko: Electrospun nanofibrous structure: A novel scaffold for tissue engineering, J. Biomed. Mater. Res. A 60(4), 613–621 (2002)

    Article  CAS  Google Scholar 

  56. H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials 24(12), 2077–2082 (2003)

    Article  CAS  Google Scholar 

  57. J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin: Electrospinning of collagen nanofibers, Biomacromolecules 3(2), 232–238 (2002)

    Article  CAS  Google Scholar 

  58. A. Di Martino, M. Sittinger, M.V. Risbud: Chitosan: A versatile biopolymer for orthopaedic tissue-engineering, Biomaterials 26(30), 5983–5990 (2005)

    Article  CAS  Google Scholar 

  59. O.H. Kwon, I.S. Lee, Y.G. Ko, W. Meng, K.H. Jung, I.K. Kang, Y. Ito: Electrospinning of microbial polyester for cell culture, Biomed. Mater. 2(1), S52–S58 (2007)

    Article  CAS  Google Scholar 

  60. B. Duan, L. Wu, X. Yuan, Z. Hu, X. Li, Y. Zhang, K. Yao, M. Wang: Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array, J. Biomed. Mater. Res. A 83A(3), 868–878 (2007)

    Article  CAS  Google Scholar 

  61. A. Cooper, S. Jana, N. Bhattarai, M. Zhang: Aligned chitosan-based nanofibers for enhanced myogenesis, J. Mater. Chem. 20(40), 8904–8911 (2010)

    Article  CAS  Google Scholar 

  62. W. Ji, Y. Sun, F. Yang, J.J. van den Beucken, M. Fan, Z. Chen, J.A. Jansen: Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications, Pharm. Res. 28(6), 1259–1272 (2011)

    Article  CAS  Google Scholar 

  63. D.A. Stout, B. Basu, T.J. Webster: Poly(lactic-co-glycolic acid): Carbon nanofiber composites for myocardial tissue engineering applications, Acta Biomater. 7(8), 3101–3112 (2011)

    Article  CAS  Google Scholar 

  64. J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt: Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications, Biomaterials 30(26), 4325–4335 (2009)

    Article  CAS  Google Scholar 

  65. L. Li, H. Li, Y. Qian, X. Li, G.K. Singh, L. Zhong, W. Liu, Y. Lv, K. Cai, L. Yang: Electrospun poly (ε-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release, Int. J. Biol. Macromol. 49(2), 223–232 (2011)

    Article  CAS  Google Scholar 

  66. H. Chen, X. Fan, J. Xia, P. Chen, X. Zhou, J. Huang, J. Yu, P. Gu: Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering, Int. J. Nanomed. 6, 453–461 (2011)

    Google Scholar 

  67. M. Gizdavic-Nikolaidis, S. Ray, J.R. Bennett, A.J. Easteal, R.P. Cooney: Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering, Macromol. Biosci. 10(12), 1424–1431 (2010)

    Article  CAS  Google Scholar 

  68. Q. Su, A. Zhao, H. Peng, S. Zhou: Preparation and characterization of biodegradable electrospun polyanhydride nano/microfibers, J. Nanosci. Nanotechnol. 10(10), 6369–6375 (2010)

    Article  CAS  Google Scholar 

  69. K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.S. Seo, B.S. Hsiao, B. Chu, M. Hadjiargyrou: Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications, Biomaterials 24(27), 4977–4985 (2003)

    Article  CAS  Google Scholar 

  70. E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Pawlowski, G.L. Bowlin: Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning, J. Macromolec. Sci. A 38(12), 1231–1243 (2001)

    Article  Google Scholar 

  71. D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin: Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters, J. Biomed. Mater. Res. B 70(2), 286–296 (2004)

    Article  CAS  Google Scholar 

  72. Y. Zhang, H. Ouyang, C.T. Lim, S. Ramakrishna, Z.M. Huang: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, J. Biomed. Mater. Res. B 72(1), 156–165 (2005)

    Article  CAS  Google Scholar 

  73. B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park: Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro, Biomaterials 25(7/8), 1289–1297 (2004)

    Article  CAS  Google Scholar 

  74. Y.Z. Zhang, J. Venugopal, Z.M. Huang, C.T. Lim, S. Ramakrishna: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts, Biomacromolecules 6(5), 2583–2589 (2005)

    Article  CAS  Google Scholar 

  75. G. Chan, D.J. Mooney: New materials for tissue engineering: Towards greater control over the biological response, Trends Biotechnol. 26(7), 382–392 (2008)

    Article  CAS  Google Scholar 

  76. M. Gümüşderelioğlu, S. Dalkıranoğlu, R.S. Aydın, S. Cakmak: A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix, J. Biomed. Mater. Res. A 98A(3), 461–472 (2011)

    Article  CAS  Google Scholar 

  77. Z.X. Meng, W. Zheng, L. Li, Y.F. Zheng: Fabrication and characterization of three-dimensional nanofiber membrane of PCL-MWCNTs by electrospinning, Mater. Sci. Eng. C 30(7), 1014–1021 (2010)

    Article  CAS  Google Scholar 

  78. Y. Orlova, N. Magome, L. Liu, Y. Chen, K. Agladze: Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue, Biomaterials 32, 5615–5624 (2011)

    Article  CAS  Google Scholar 

  79. J.W. Lichtman, J.A. Conchello: Fluorescence microscopy, Nat. Methods 2(12), 910–919 (2005)

    Article  CAS  Google Scholar 

  80. S.W. Paddock: Principles and practices of laser scanning confocal microscopy, Mol. Biotechnol. 16(2), 127–149 (2000)

    Article  CAS  Google Scholar 

  81. C. Cremer: Optics far beyond the diffraction limit. In: Springer Handbook of Lasers and Optics, 2nd edn., ed. by F. Träger (Springer, Berlin, Heidelberg 2012) pp. 1359–1397, Chap. 20

    Chapter  Google Scholar 

  82. C.D. Keating, S.P. Mulvaney: Raman spectroscopy, Anal. Chem. 72(12), 145r–157r (2000)

    Article  CAS  Google Scholar 

  83. J.J. Santiago-Aviles, Y. Wang, S. Serrano: Raman characterization of carbon nanofibers prepared using electrospinning, Synth. Met. 138(3), 423–427 (2003)

    Article  CAS  Google Scholar 

  84. R. Nirmala, K.T. Nam, R. Navamathavan, S.J. Park, H.Y. Kim: Hydroxyapatite mineralization on the calcium chloride blended polyurethane nanofiber via biomimetic method, Nanoscale Res. Lett. 6(1), 2 (2010)

    CAS  Google Scholar 

  85. X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu: Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 43(16), 4403–4412 (2002)

    Article  CAS  Google Scholar 

  86. Z.L. Wang: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B 104(6), 1153–1175 (2000)

    Article  CAS  Google Scholar 

  87. R. Chen, C. Huang, Q. Ke, C. He, H. Wang, X. Mo: Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications, Colloids Surf. B 79(2), 315–325 (2010)

    Article  CAS  Google Scholar 

  88. M. Xing, W. Zhong, X. Xu, D. Thomson: Adhesion force studies of nanofibers and nanoparticles, Langmuir 26(14), 11809–11814 (2010)

    Article  CAS  Google Scholar 

  89. E.P.S. Tan, C.T. Lim: Mechanical characterization of nanofibers- A review, Composit. Sci. Technol. 66, 1102–1111 (2005)

    Article  CAS  Google Scholar 

  90. K.C. Neuman, T. Lionnet, J.-F. Alleman: Single-molecule micromanipulation techniques, Annu. Rev. Mater. Res. 37, 33–67 (2007)

    Article  CAS  Google Scholar 

  91. C.R. Carlisle, C. Coulais, M. Guthold: The mechanical stress–strain properties of single electrospun collagen type I nanofibers, Acta Biomater. 6(8), 2997–3003 (2010)

    Article  CAS  Google Scholar 

  92. A. Ishijima, H. Kojima, H. Higuchi, Y. Harada, T. Funatsu, T. Yanagida: Multiple- and single-molecule analysis of the actomyosin motor by nanometer piconewton manipulation with a microneedle: Unitary steps and forces, Biophys. J. 70(1), 383–400 (1996)

    Article  CAS  Google Scholar 

  93. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans: Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy, Nature 397(6714), 50–53 (1999)

    Article  CAS  Google Scholar 

  94. C. Veigel, C.F. Schmidt: Moving into the cell: Single-molecule studies of molecular motors in complex environments, Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011)

    Article  CAS  Google Scholar 

  95. K.C. Neuman, A. Nagy: Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Meth. 5(6), 491–505 (2008)

    Article  CAS  Google Scholar 

  96. G.E. Park, T.J. Webster: A review of nanotechnology for the development of better orthopedic implants, J. Biomed. Nanotechnol. 1(1), 18–29 (2005)

    Article  CAS  Google Scholar 

  97. Z.G. Zhang, Z.H. Li, X.Z. Mao, W.C. Wang: Advances in bone repair with nanobiomaterials: Mini-review, Cytotechnology 63(5), 437–443 (2011)

    Article  CAS  Google Scholar 

  98. R. James, M. Deng, C.T. Laurencin, S.G. Kumbar: Nanocomposites and bone regeneration, Frontiers Mater. Sci. 5(4), 342–357 (2011)

    Article  Google Scholar 

  99. M. Keeney, J.H. Lai, F. Yang: Recent progress in cartilage tissue engineering, Curr. Opin. Biotechnol. 22(5), 734–740 (2011)

    Article  CAS  Google Scholar 

  100. J.P. Beier, D. Klumpp, M. Rudisile, R. Dersch, J.H. Wendorff, O. Bleiziffer, A. Arkudas, E. Polykandriotis, R.E. Horch, U. Kneser: Collagen matrices from sponge to nano: New perspectives for tissue engineering of skeletal muscle, BMC Biotechnol. 9, 34 (2009)

    Article  CAS  Google Scholar 

  101. V.L. Roger, A.S. Go, D.M. Lloyd-Jones, R.J. Adams, J.D. Berry, T.M. Brown, M.R. Carnethon, S. Dai, G. de Simone, E.S. Ford, C.S. Fox, H.J. Fullerton, C. Gillespie, K.J. Greenlund, S.M. Hailpern, J.A. Heit, P.M. Ho, V.J. Howard, B.M. Kissela, S.J. Kittner, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, D.M. Makuc, G.M. Marcus, A. Marelli, D.B. Matchar, M.M. McDermott, J.B. Meigs, C.S. Moy, D. Mozaffarian, M.E. Mussolino, G. Nichol, N.P. Paynter, W.D. Rosamond, P.D. Sorlie, R.S. Stafford, T.N. Turan, M.B. Turner, N.D. Wong, J. Wylie-Rosett, American Heart Association Statistics Committee, Stroke Statistics Subcommittee: Heart disease and stroke statistics-2011 update, Circulation 123, e18–e209 (2011)

    Article  Google Scholar 

  102. D. Kai, M.P. Prabhakaran, G. Jin, S. Ramakrishna: Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of biomedical materials research, Appl. Biomater. B 98, 379–386 (2011)

    Article  CAS  Google Scholar 

  103. D. Li, Y. Wang, Y. Xia: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett. 3, 1167–1171 (2003)

    Article  CAS  Google Scholar 

  104. G.C. Engelmayr Jr., M. Cheng, C.J. Bettinger, J.T. Borenstein, R. Langer, L.E. Freed: Accordion-like honeycombs for tissue engineering of cardiac anisotropy, Nat. Mater. 7, 1003–1010 (2008)

    Article  CAS  Google Scholar 

  105. I.J. Legrice, P.J. Hunter, B.H. Smaill: Laminar structure of the heart: A mathematical model, Am. J. Physiol. 272, H2466–H2476 (1997)

    CAS  Google Scholar 

  106. R.J. Young, A.V. Panfilov: Anisotropy of wave propagation in the heart can be modeled by a Riemannian electrophysiological metric, Proc. Natl. Acad. Sci. 107, 15063–15068 (2010)

    Article  CAS  Google Scholar 

  107. E. Fernandes, V. Zucolotto, A. De Queiroz: Electrospinning of hyperbranched poly-L-lysine/polyaniline nanofibers for application in cardiac tissue engineering, J. Macromolec. Sci. A 47, 1203–1207 (2010)

    Article  CAS  Google Scholar 

  108. A. Borriello, V. Guarino, L. Schiavo, M.A. Alvarez-Perez, L. Ambrosio: Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle, J. Mater. Sci. Mater. Med. 22, 1053–1062 (2011)

    Article  CAS  Google Scholar 

  109. H.D. Guo, G.H. Cui, H.J. Wang, Y.Z. Tan: Transplantation of marrow-derived cardiac stem cells carried in designer self-assembling peptide nanofibers improves cardiac function after myocardial infarction, Biochem. Biophys. Res. Commun. 399, 42–48 (2010)

    Article  CAS  Google Scholar 

  110. H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, N. Kawaguchi: Micro and nano-scale in vitro 3D culture system for cardiac stem cells, J. Biomed. Mater. Res. A 94, 1–8 (2010)

    Article  CAS  Google Scholar 

  111. O. Ishii, M. Shin, T. Sueda, J.P. Vacanti: In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography, J. Thorac. Cardiovasc. Surg. 130, 1358–1363 (2005)

    Article  Google Scholar 

  112. N. Ashammakhi, A. Ndreu, Y. Yang, H. Ylikauppila, L. Nikkola: Nanofiber-based scaffolds for tissue engineering, Eur. J. Plast. Surg. 35, 135–149 (2012)

    Article  Google Scholar 

  113. X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna: Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials 25, 1883–1890 (2004)

    Article  CAS  Google Scholar 

  114. D.A. Narmoneva, R. Vukmirovic, M.E. Davis, R.D. Kamm, R.T. Lee: Endothelial cells promote cardiac myocyte survival and spatial reorganization: Implications for cardiac regeneration, Circulation 110, 962–968 (2004)

    Article  Google Scholar 

  115. C.A. Edwardo, P. Petrosko, T.O. Acarturk, P.A. DiMilla, W.A. LaFramboise, P.C. Johnson: Muscle tissue engineering, Clin. Plast. Surg. 26(4), 647–656 (1999)

    Google Scholar 

  116. A. Cooper, S. Jana, N. Bhattarai, M.Q. Zhang: Aligned chitosan-based nanofibers for enhanced myogenesis, J. Mater. Chem. 20(40), 8904–8911 (2010)

    Article  CAS  Google Scholar 

  117. L.S. Wray, E.J. Orwin: Recreating the microenvironment of the native cornea for tissue engineering applications, Tissue Eng. A 15(7), 1463–1472 (2009)

    Article  CAS  Google Scholar 

  118. Y. Komai, T. Ushiki: The three-dimensional organization of collagen fibrils in the human cornea and sclera, Invest. Ophthalmol. Vis. Sci. 32(8), 2244–2258 (1991)

    CAS  Google Scholar 

  119. K.M. Meek, C. Boote: The organization of collagen in the corneal stroma, Exp. Eye Res. 78(3), 503–512 (2004)

    Article  CAS  Google Scholar 

  120. J.V. Jester, W.M. Petroll, P.A. Barry, H.D. Cavanagh: Expression of alpha-smooth muscle (alpha-SM) actin during corneal stromal wound healing, Invest. Ophthalmol. Vis. Sci. 36(5), 809–819 (1995)

    CAS  Google Scholar 

  121. D. Phu, L.S. Wray, R.V. Warren, R.C. Haskell, E.J. Orwin: Effect of substrate composition and alignment on corneal cell phenotype, Tissue Eng. A 17(5/6), 799–807 (2011)

    Article  CAS  Google Scholar 

  122. A. Zajicova, K. Pokorna, A. Lencova, M. Krulova, E. Svobodova, S. Kubinova, E. Sykova, M. Pradny, J. Michalek, J. Svobodova, M. Munzarova, V. Holan: Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds, Cell Transplant. 19(10), 1281–1290 (2010)

    Article  Google Scholar 

  123. H. Bakhshandeh, M. Soleimani, S.S. Hosseini, H. Hashemi, I. Shabani, A. Shafiee, A.H. Nejad, M. Erfan, R. Dinarvand, F. Atyabi: Poly (varepsilon-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea, Int. J. Nanomed. 6, 1509–1515 (2011)

    CAS  Google Scholar 

  124. F. Yang, R. Murugan, S. Wang, S. Ramakrishna: Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials 26(15), 2603–2610 (2005)

    Article  CAS  Google Scholar 

  125. H.S. Koh, T. Yong, C.K. Chan, S. Ramakrishna: Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin, Biomaterials 29(26), 3574–3582 (2008)

    Article  CAS  Google Scholar 

  126. M.K. Horne, D.R. Nisbet, J.S. Forsythe, C.L. Parish: Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells, Stem Cell. Dev. 19(6), 843–852 (2010)

    Article  CAS  Google Scholar 

  127. Y. Zhu, A. Wang, S. Patel, K. Kurpinski, E. Diao, X. Bao, G. Kwong, W.L. Young, S. Li: Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration, Tissue Eng. C 17(7), 705–715 (2011)

    Article  CAS  Google Scholar 

  128. J. Xie, M.R. Macewan, S.M. Willerth, X. Li, D.W. Moran, S.E. Sakiyama-Elbert, Y. Xia: Conductive core-sheath nanofibers and their potential application in neural tissue engineering, Adv. Funct. Mater. 19(14), 2312–2318 (2009)

    Article  CAS  Google Scholar 

  129. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna: Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering, J. Tissue Eng. Regen. Med. 5(4), e17–e35 (2011)

    Article  CAS  Google Scholar 

  130. M. Li, Y. Guo, Y. Wei, A.G. MacDiarmid, P.I. Lelkes: Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials 27(13), 2705–2715 (2006)

    Article  CAS  Google Scholar 

  131. Y. Guo, M. Li, A. Mylonakis, J. Han, A.G. MacDiarmid, X. Chen, P.I. Lelkes, Y. Wei: Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications, Biomacromolecules 8(10), 3025–3034 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachelle N. Palchesko , Yan Sun , Ling Zhang , John M. Szymanski , Quentin Jallerat or Adam W. Feinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Palchesko, R.N., Sun, Y., Zhang, L., Szymanski, J.M., Jallerat, Q., Feinberg, A.W. (2013). Nanofiber Biomaterials. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_27

Download citation

Publish with us

Policies and ethics