Skip to main content

Robotic Simulation Training

  • Chapter
  • First Online:
Robotic-Assisted Minimally Invasive Surgery

Abstract

Simulation is a critical tool in minimally invasive surgery and holds similar importance in robotic surgery. In this chapter, we review the current use and promise of simulation in robotic surgery. We begin with a review of pertinent concepts in simulation. Fidelity is the accuracy of a simulation in representing a real system. The setting of the simulation creates opportunities for and controls the parameters of the simulation. Computerization has revolutionized simulation and has led to the development of virtual reality simulators for surgical training. We then discuss various levels of simulation fidelity within practical and virtual reality. Practical models include suture boards, trainer boxes, exercises in room setup, basic console use, and in vitro and cadaveric models. Virtual reality includes visual and auditory immersion which has introduced many new tools and opportunities for robotic surgical educators, researchers, and trainees. Finally, we review assessment tools used by educators to objectively and subjectively evaluate learners in simulation-based curricula and to evaluate the simulations themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Menaker SA, Shah SS, Snelling BM, Sur S, Starke RM, Peterson EC. Current applications and future perspectives of robotics in cerebrovascular and endovascular neurosurgery. J Neurointerv Surg. 2017;10(1):78–82.

    Article  Google Scholar 

  2. Nelson RJ, Chavali JSS, Yerram N, Babbar P, Kaouk JH. Current status of robotic single-port surgery. Urol Ann. 2017;9(3):217–22.

    Article  Google Scholar 

  3. Schiff L, Tsafrir Z, Aoun J, Taylor A, Theoharis E, Eisenstein D. Quality of communication in robotic surgery and surgical outcomes. JSLS. 2016;20(3):00026.

    Article  Google Scholar 

  4. Falkenback D, Lehane CW, Lord RV. Robot-assisted oesophageal and gastric surgery for benign disease: antireflux operations and Heller’s myotomy. ANZ J Surg. 2015;85(3):113–20.

    Article  Google Scholar 

  5. Chang EHE, Kim HY, Koh YW, Chung WY. Overview of robotic thyroidectomy. Gland Surg. 2017;6(3):218–28.

    Article  Google Scholar 

  6. Connolly M, Seligman J, Kastenmeier A, Goldblatt M, Gould JC. Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc. [Journal Article Research Support, Non-U.S. Gov’t Validation Studies]. 2014;28(5):1691–4.

    Article  Google Scholar 

  7. Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot. 2014;10(3):379–84.

    Article  Google Scholar 

  8. Lee MR, Lee GI. Does a robotic surgery approach offer optimal ergonomics to gynecologic surgeons?: a comprehensive ergonomics survey study in gynecologic robotic surgery. J Gynecol Oncol. 2017;28(5):e70.

    Article  Google Scholar 

  9. Raza SJ, Froghi S, Chowriappa A, Ahmed K, Field E, Stegemann AP, et al. Construct validation of the key components of fundamental skills of robotic surgery (FSRS) curriculum – a multi-institution prospective study. J Surg Educ. 2014;71(3):316–24.

    Article  Google Scholar 

  10. Efanov M, Alikhanov R, Tsvirkun V, Kazakov I, Melekhina O, Kim P, et al. Comparative analysis of learning curve in complex robot-assisted and laparoscopic liver resection. HPB (Oxford). 2017;19(9):818–24.

    Article  Google Scholar 

  11. Goldenberg MG, Goldenberg L, Grantcharov TP. Surgeon performance predicts early continence after robot-assisted radical prostatectomy. J Endourol. 2017;31(9):858–63.

    Article  Google Scholar 

  12. Lee S, Son T, Kim HI, Hyung WJ. Status and prospects of robotic gastrectomy for gastric cancer: our experience and a review of the literature. Gastroenterol Res Pract. 2017;2017:7197652.

    PubMed  PubMed Central  Google Scholar 

  13. Raimondi P, Marchegiani F, Cieri M, Cichella A, Cotellese R, Innocenti P. Is right colectomy a complete learning procedure for a robotic surgical program? J Robot Surg. 2017;12(1):147–55.

    Article  Google Scholar 

  14. Zelhart M, Kaiser AM. Robotic versus laparoscopic versus open colorectal surgery: towards defining criteria to the right choice. Surg Endosc. 2017;32(1):24–38.

    Article  Google Scholar 

  15. Badash I, Burtt K, Solorzano CA, Carey JN. Innovations in surgery simulation: a review of past, current and future techniques. Ann Transl Med. 2016;4(23):453.

    Article  Google Scholar 

  16. Zihni AM, Ray S, Declue A, Tiemann D, Wang R, Liang Z, Awad MM. Operative performance outcomes of a simulator-based robotic surgical skills curriculum. Houston: Society of American Gastrointestinal and Endoscopic Surgeons; 2017.

    Google Scholar 

  17. Brackney DE, Priode K. Back to reality: the use of the presence questionnaire for measurement of fidelity in simulation. J Nurs Meas. 2017;25(2):66–73.

    Article  Google Scholar 

  18. Brown K, Mosley N, Tierney J. Battle of the bots: a comparison of the standard da Vinci and the da Vinci surgical skills simulator in surgical skills acquisition. J Robot Surg. 2016;11(2):159–62.

    Article  Google Scholar 

  19. Intuitive Surgical, Inc. da Vinci training. Sunnyvale: Intuitive Surgical, Inc; 2017. [cited 2017 06/01]; Available from: https://www.intuitivesurgical.com/training/.

    Google Scholar 

  20. Herron DM. A consensus document on robotic surgery. Los Angeles: Society of American Gastrointestinal and Endoscopic Surgeons; 2007. [cited 2017 06/01]; Available from: https://www.sages.org/publications/guidelines/consensus-document-robotic-surgery/.

    Google Scholar 

  21. Sexton K, Johnson A, Gotsch A, Hussein AA, Cavuoto L, Guru KA. Anticipation, teamwork and cognitive load: chasing efficiency during robot-assisted surgery. BMJ Qual Saf. 2018;27(2):148–54.

    Article  Google Scholar 

  22. Seeley MA, Kazarian E, King B, Biermann JS, Carpenter JE, Caird MS, et al. Core concepts: orthopedic intern curriculum boot camp. Orthopedics. 2016;39(1):e62–7. Epub 2016 Jan 5. https://doi.org/10.3928/01477447-20151228-03.

    Article  PubMed  Google Scholar 

  23. Zihni AM, Ohu I, Cavallo JA, Ousley J, Cho S, Awad MM. FLS tasks can be used as an ergonomic discriminator between laparoscopic and robotic surgery. Surg Endosc. 2014;28(8):2459–65.

    Article  Google Scholar 

  24. Cullinan DR, Schill MR, DeClue A, Salles A, Wise PE, Awad MM. Fundamentals of laparoscopic surgery: not only for senior residents. J Surg Educ. 2017;74(6):e51–4.

    Article  Google Scholar 

  25. Franklin BR, Placek SB, Wagner MD, Haviland SM, O’Donnell MT, Ritter EM. Cost comparison of fundamentals of laparoscopic surgery training completed with standard fundamentals of laparoscopic surgery equipment versus low-cost equipment. J Surg Educ. 2017;74(3):459–65.

    Article  Google Scholar 

  26. Nemani A, Ahn W, Cooper C, Schwaitzberg S, De S. Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator. Surg Endosc. 2017;32(3):1265–72.

    Article  Google Scholar 

  27. Zendejas B, Ruparel RK, Cook DA. Validity evidence for the fundamentals of laparoscopic surgery (FLS) program as an assessment tool: a systematic review. Surg Endosc. 2016;30(2):512–20.

    Article  Google Scholar 

  28. Lum MJ, Rosen J, Lendvay TS, Wright AS, Sinanan MN, Hannaford B. TeleRobotic fundamentals of laparoscopic surgery (FLS): effects of time delay – pilot study. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5597–600.

    PubMed  Google Scholar 

  29. Stefanidis D, Hope WW, Scott DJ. Robotic suturing on the FLS model possesses construct validity, is less physically demanding, and is favored by more surgeons compared with laparoscopy. Surg Endosc. 2011;25(7):2141–6.

    Article  Google Scholar 

  30. Panait L, Shetty S, Shewokis PA, Sanchez JA. Do laparoscopic skills transfer to robotic surgery? J Surg Res. 2014;187(1):53–8.

    Article  Google Scholar 

  31. Forgione A, Guraya SY. The cutting-edge training modalities and educational platforms for accredited surgical training: a systematic review. J Res Med Sci. 2017;22:51.

    Article  Google Scholar 

  32. Schlottmann F, Murty NS, Patti MG. Simulation model for laparoscopic foregut surgery: The University of North Carolina foregut model. J Laparoendosc Adv Surg Tech A. 2017;27(7):661–5.

    Article  Google Scholar 

  33. Alzahrani T, Haddad R, Alkhayal A, Delisle J, Drudi L, Gotlieb W, et al. Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc J. 2013;7(7–8):E520–9.

    Article  Google Scholar 

  34. Raison N, Ahmed K, Fossati N, Buffi N, Mottrie A, Dasgupta P, et al. Competency based training in robotic surgery: benchmark scores for virtual reality robotic simulation. BJU Int. 2016;119(5):804–11.

    Article  Google Scholar 

  35. Yang K, Zhen H, Hubert N, Perez M, Wang XH, Hubert J. From dV-trainer to real robotic console: the limitations of robotic skill training. J Surg Educ. 2017;74(6):1074–80.

    Article  Google Scholar 

  36. Hogg ME, Tam V, Zenati M, Novak S, Miller J, Zureikat AH, et al. Mastery-based virtual reality robotic simulation curriculum: the first step toward operative robotic proficiency. J Surg Educ. 2016;74(3):477–85.

    Article  Google Scholar 

  37. Dubin AK, Smith R, Julian D, Tanaka A, Mattingly P. A comparison of robotic simulation performance on basic virtual reality skills: simulator subjective vs. objective assessment tools. J Minim Invasive Gynecol. 2017;24(7):1184–9.

    Article  Google Scholar 

  38. Frederick PJ, Szender JB, Hussein AA, Kesterson JP, Shelton JA, Anderson TL, et al. Surgical competency for robot-assisted hysterectomy: development and validation of a robotic hysterectomy assessment score (RHAS). J Minim Invasive Gynecol. 2017;24(1):55–61.

    Article  Google Scholar 

  39. Liu M, Purohit S, Mazanetz J, Allen W, Kreaden US, Curet M. Assessment of robotic console skills (ARCS): construct validity of a novel global rating scale for technical skills in robotically assisted surgery. Surg Endosc. 2017;32(1):526–35.

    Article  Google Scholar 

  40. Mills JT, Hougen HY, Bitner D, Krupski TL, Schenkman NS. Does robotic surgical simulator performance correlate with surgical skill? J Surg Educ. 2017;74(6):1052–6.

    Article  Google Scholar 

  41. Vargas MV, Moawad G, Denny K, Happ L, Misa NY, Margulies S, et al. Transferability of virtual reality, simulation-based, robotic suturing skills to a live porcine model in novice surgeons: a single-blind randomized controlled trial. J Minim Invasive Gynecol. 2017;24(3):420–5.

    Article  Google Scholar 

  42. Zihni AM, Cavallo JA, Ray S, Ohu I, Cho S, Awad MM. Ergonomic analysis of primary and assistant surgical roles. J Surg Res. 2016;203(2):301–5.

    Article  Google Scholar 

  43. Zihni AM, Ohu I, Cavallo JA, Cho S, Awad MM. Ergonomic analysis of robot-assisted and traditional laparoscopic procedures. Surg Endosc. 2014;28(12):3379–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Awad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zihni, A., Gerull, W., Awad, M.M. (2019). Robotic Simulation Training. In: Tsuda, S., Kudsi, O. (eds) Robotic-Assisted Minimally Invasive Surgery . Springer, Cham. https://doi.org/10.1007/978-3-319-96866-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96866-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96865-0

  • Online ISBN: 978-3-319-96866-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics