Skip to main content

Education and Simulation in Minimally Invasive Surgery

  • Chapter
  • First Online:
Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology

Abstract

Over the past several decades, simulation has been introduced as a tool for surgical training. Simulation has several advantages compared to traditional training in the live patient setting, most importantly ensuring patient safety. Simulation has been developed using a variety of training platforms ranging from physical simulation to virtual reality simulation. Surgical simulation allows for development and maintenance of surgical skills that translate to the live patient setting. Simulation also has the added benefit of allowing trainees to have adequate exposure to less commonly performed surgical tasks and procedures. The most widely utilized application of surgical simulation to date has been in minimally invasive surgery. In addition to the role in education and training, simulation is beginning to be utilized as a method to demonstrate proficiency for credentialing and certification purposes. As simulation continues to gain acceptance in the surgical training community, additional uses and applications will emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argun OB, Chrouser K, Chauhan S, Monga M, Knudsen B, Box GN, et al. Multi-institutional validation of an OSATS for the assessment of cystoscopic and ureteroscopic skills. J Urol. 2015;194(4):1098–105.

    PubMed  Google Scholar 

  2. Lendvay TS, Hannaford B, Satava RM. Future of robotic surgery. Cancer J. 2013;19(2):109–19.

    PubMed  Google Scholar 

  3. Jabbour N, Snyderman CH. The economics of surgical simulation. Otolaryngol Clin N Am. 2017;50(5):1029–36.

    Google Scholar 

  4. Lendvay TS. Editorial comment. J Urol. 2015;194(4):1105–6.

    PubMed  Google Scholar 

  5. James JT. A new, evidence-based estimate of patient harms associated with hospital care. J Patient Saf. 2013;9(3):122–8.

    PubMed  Google Scholar 

  6. Heron M. Deaths: leading causes for 2016. Natl Vital Stat Rep. 2018;67(6):1–77.

    PubMed  Google Scholar 

  7. Anderson JG, Abrahamson K. Your health care may kill you: medical errors. Stud Health Technol Inform. 2017;234:13–7.

    PubMed  Google Scholar 

  8. Birkmeyer JD, Finks JF, O’Reilly A, Oerline M, Carlin AM, Nunn AR, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42.

    CAS  PubMed  Google Scholar 

  9. Williams TE, Satiani B, Thomas A, Ellison EC. The impending shortage and the estimated cost of training the future surgical workforce. Trans Meet Am Surg Assoc. 2009;127(4):221–8.

    Google Scholar 

  10. Ziaee SAM, Sichani MM, Kashi AH, Samzadeh M. Evaluation of the learning curve for percutaneous nephrolithotomy. Urol J. 2010;7(4):226–31.

    PubMed  Google Scholar 

  11. Sorensen MD, Delostrinos C, Johnson MH, Grady RW, Lendvay TS. Comparison of the learning curve and outcomes of robotic assisted pediatric pyeloplasty. J Urol. 2011;185(6 SUPPL):2517–22.

    PubMed  Google Scholar 

  12. Allen D, O’Brien T, Tiptaft R, Glass J. Defining the learning curve for percutaneous nephrolithotomy. J Endourol. 2005;19(3):279–82.

    PubMed  Google Scholar 

  13. Watterson JD, Soon S, Jana K. Access related complications during percutaneous nephrolithotomy: urology versus radiology at a single academic institution. J Urol. 2006;176(1):142–5.

    PubMed  Google Scholar 

  14. Guiu-Souto J, Otero C, Pérez-Fentes DA, Fernández-Baltar C, Francisco Sánchez-Garcia J, García-Freire C, et al. Characterising endourologist learning curve during percutaneous nephrolithotomy: implications on occupational dose and patients. J Radiol Prot. 2017;37(4):N49–54.

    PubMed  Google Scholar 

  15. Song Y, Ma Y, Song Y, Fei X. Evaluating the learning curve for percutaneous nephrolithotomy under total ultrasound guidance. Hills RK, editor. PLoS One. 2015;10(8):e0132986.

    PubMed  PubMed Central  Google Scholar 

  16. Ku JH, Yeo WG, Kim HH, Choi H. Laparoscopic nephrectomy for renal diseases in children: is there a learning curve? J Pediatr Surg. 2005;40(7):1173–6.

    PubMed  Google Scholar 

  17. Passerotti CC, Passerotti AMAMS, Dall’Oglio MF, Leite KRM, Nunes RLV, Srougi M, et al. Comparing the quality of the suture anastomosis and the learning curves associated with performing open, freehand, and robotic-assisted laparoscopic pyeloplasty in a swine animal model. J Am Coll Surg. 2009;208(4):576–86.

    PubMed  Google Scholar 

  18. Abboudi H, Khan MS, Guru KA, Froghi S, De Win G, Van Poppel H, et al. Learning curves for urological procedures: a systematic review. BJU Int. 2014;114(4):617–29.

    PubMed  Google Scholar 

  19. Tasian GE, Wiebe DJ, Casale P. Learning curve of robotic assisted pyeloplasty for pediatric urology fellows. J Urol. 2013;190(4 SUPPL):1622–6.

    PubMed  PubMed Central  Google Scholar 

  20. Sim HG, Yip SKH, Lau WKO, Tan YH, Wong MYC, Cheng CWS. Team-based approach reduces learning curve in robot-assisted laparoscopic radical prostatectomy. Int J Urol. 2006;13(5):560–4.

    PubMed  Google Scholar 

  21. Martin JA, Regehr G, Reznick R, Macrae H, Murnaghan J, Hutchison C, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84(2):273–8.

    CAS  PubMed  Google Scholar 

  22. Kishore TA, Pedro RN, Monga M, Sweet RM. Assessment of validity of an OSATS for cystoscopic and ureteroscopic cognitive and psychomotor skills. J Endourol. 2008;22(12):2707–12.

    PubMed  Google Scholar 

  23. Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, Moses G, et al. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg. 2005;241(2):364–72.

    PubMed  PubMed Central  Google Scholar 

  24. McDougall EM, Clayman RV. Rapid communication: minimally invasive urologic surgery curricula. J Endourol. 2007;21(2):197–217.

    PubMed  Google Scholar 

  25. Ghani KR, Miller DC, Linsell S, Brachulis A, Lane B, Sarle R, et al. Measuring to improve: peer and crowd-sourced assessments of technical skill with robot-assisted radical prostatectomy. Eur Urol. 2016;69(4):547–50.

    PubMed  Google Scholar 

  26. Lendvay TS, White L, Kowalewski T. Crowdsourcing to assess surgical skill. JAMA Surg. 2015;150(11):1086.

    PubMed  Google Scholar 

  27. Holst D, Kowalewski TM, White LW, Brand TC, Harper JD, Sorenson MD, et al. Crowd-sourced assessment of technical skills: an adjunct to urology resident surgical simulation training. J Endourol. 2015;29(5):604–9.

    PubMed  Google Scholar 

  28. Dawe SR, Pena GN, Windsor JA, Broeders JAJL, Cregan PC, Hewett PJ, et al. Systematic review of skills transfer after surgical simulation-based training. Br J Surg. 2014;101(9):1063–76.

    CAS  PubMed  Google Scholar 

  29. Brydges R, Farhat WA, El-Hout Y, Dubrowski A. Pediatric urology training: performance-based assessment using the fundamentals of laparoscopic surgery. J Surg Res. 2010;161(2):240–5.

    PubMed  Google Scholar 

  30. Steigerwald SN, Park J, Hardy KM, Gillman LM, Vergis AS. Does laparoscopic simulation predict intraoperative performance? A comparison between the fundamentals of laparoscopic surgery and LapVR evaluation metrics. Am J Surg. 2015;209(1):34–9.

    PubMed  Google Scholar 

  31. Gallagher AG, Satava RM. Surgical simulation. Ann Surg. 2015;262(2):e50–1.

    PubMed  Google Scholar 

  32. Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015;115(2):336–45.

    PubMed  Google Scholar 

  33. Santangelo G, Mix D, Ghazi A, Stoner M, Vates GE, Stone JJ. Development of a whole-task simulator for carotid endarterectomy. Oper Neurosurg. 2018;14(6):697–704.

    Google Scholar 

  34. Ghazi A, Campbell T, Melnyk R, Feng C, Andrusco A, Stone J, et al. Validation of a full-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol. 2017;31(12):1314–20.

    PubMed  Google Scholar 

  35. Weiss MY, Melnyk R, Mix D, Ghazi A, Vates GE, Stone JJ. Design and validation of a cervical laminectomy simulator using 3D printing and hydrogel phantoms. Oper Neurosurg. 2019;18:202–8.

    Google Scholar 

  36. Millán C, Rey M, Lopez M. LAParoscopic simulator for pediatric ureteral reimplantation (LAP-SPUR) following the Lich-Gregoir technique. J Pediatr Urol. 2018;14(2):137–43.

    PubMed  Google Scholar 

  37. Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23(3):503–8.

    PubMed  Google Scholar 

  38. Whitehurst SV, Lockrow EG, Lendvay TS, Propst AM, Dunlow SG, Rosemeyer CJ, et al. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model). J Minim Invasive Gynecol. 2015;22(3):483–8.

    PubMed  Google Scholar 

  39. Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ. 2014;71(5):762–7.

    PubMed  Google Scholar 

  40. Abdalla G, Moran-Atkin E, Chen G, Schweitzer MA, Magnuson TH, Steele KE. The effect of warm-up on surgical performance: a systematic review. Surg Endosc. 2015;29(6):1259–69.

    PubMed  Google Scholar 

  41. da Cruz JAS, dos Reis ST, Cunha Frati RM, Duarte RJ, Nguyen H, Srougi M, et al. Does warm-up training in a virtual reality simulator improve surgical performance? A prospective randomized analysis. J Surg Educ. 2016;73(6):974–8.

    PubMed  Google Scholar 

  42. Pike TW, Pathak S, Mushtaq F, Wilkie RM, Mon-Williams M, Lodge JPA. A systematic examination of preoperative surgery warm-up routines. Surg Endosc. 2017;31(5):2202–14.

    CAS  PubMed  Google Scholar 

  43. Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92.

    PubMed  PubMed Central  Google Scholar 

  44. Polterauer S, Husslein H, Kranawetter M, Schwameis R, Reinthaller A, Heinze G, et al. Effect of preoperative warm-up exercise before laparoscopic gynecological surgery: a randomized trial. J Surg Educ. 2016;73(3):429–32.

    PubMed  Google Scholar 

  45. Arora S, Aggarwal R, Sirimanna P, Moran A, Grantcharov T, Kneebone R, et al. Mental practice enhances surgical technical skills: a randomized controlled study. Ann Surg. 2011;253(2):265–70.

    PubMed  Google Scholar 

  46. Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Lendvay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berrondo, C., Canalichio, K.L., Lendvay, T.S. (2020). Education and Simulation in Minimally Invasive Surgery. In: Gargollo, P.C. (eds) Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-57219-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57219-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57218-1

  • Online ISBN: 978-3-030-57219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics