Skip to main content

Abstract

We define the notion of Platonic surfaces. These are anticanonical smooth projective rational surfaces defined over any fixed algebraically closed field of arbitrary characteristic and having the projective plane as a minimal model with very nice geometric properties. We prove that their Cox rings are finitely generated. In particular, they are extremal and their effective monoids are finitely generated. Thus, these Platonic surfaces are built from points of the projective plane which are in good position. It is worth noting that not only their Picard number may be big but also an anticanonical divisor may have a very large number of irreducible components.

Dedicated to Professor Antonio Campillo-López ( http://www.singacom.uva.es/campillo/index.html ) on the occasion of his 65th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artebani, M., Laface, A.: Cox rings of surfaces and the anticanonical Iitaka dimension. Adv. Math. 226(6), 5252–5267 (2011)

    Article  MathSciNet  Google Scholar 

  2. Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Springer. Berlin (1984)

    Book  Google Scholar 

  3. Batyrev, V., Popov, O.: The Cox ring of a Del Pezzo surface. In: Poonen, B., Tschinkel, Y. (eds.) Arithmetic of Higher-Dimensional Algebraic Varieties, pp. 85–103. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  4. Campillo, A., Piltant O., Reguera-López, A.J.: Cones of curves and of line bundles on surfaces associated with curves having one place at infinity. Proc. Lond. Math. Soc. (3) 84(3), 559–580 (2002)

    Article  MathSciNet  Google Scholar 

  5. Campillo, A., Piltant, O., Reguera, A.J.: Cones of curves and of line bundles at “infinity”. J. Algebra. 293, 503–542 (2005)

    Article  MathSciNet  Google Scholar 

  6. Castravet, A.M., Tevelev, J.: Hilbert’s 14th problem and Cox rings. Compos. Math. 142(6), 1479–1498 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cerda-Rodríguez, J.A., Failla, G., Lahyane, M., Osuna-Castro, O.: Fixed loci of the anticanonical complete linear systems of anticanonical rational surfaces. Balkan J. Geom. Appl. 17(1), 1–8 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Cox, D.: The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4(1), 17–50 (1995)

    MathSciNet  MATH  Google Scholar 

  9. De La Rosa Navarro, B.L., Frías Medina, J.B., Lahyane, M., Moreno Mejía, I., Osuna Castro, O.: A geometric criterion for the finite generation of the Cox ring of projective surfaces. Rev. Mat. Iberoam. 31(4), 1131–1140 (2015)

    Article  MathSciNet  Google Scholar 

  10. De La Rosa-Navarro, B.L., Frías-Medina, J.B., Lahyane, M.: Rational surfaces with finitely generated Cox rings and very high Picard numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 111(2), 297–306 (2017)

    Article  MathSciNet  Google Scholar 

  11. Failla, G., Lahyane, M., Molica Bisci, G.: On the finite generation of the monoid of effective divisor classes on rational surfaces of type (n, m). Atti Accademia Peloritana Pericolanti Cl. Sci. Fis., Mat. Natur. LXXXIV (2006). https://doi.org/10.1478/C1A0601001

  12. Failla, G., Lahyane, M., Molica Bisci, G.: The finite generation of the monoid of effective divisor classes on Platonic rational surfaces. In: Singularity Theory, pp. 565–576. World Scientific Publication, Hackensack (2007)

    Google Scholar 

  13. Failla, G., Lahyane, M., Molica Bisci, G.: Rational surfaces of Kodaira type IV . Boll. Unione Mat. Ital., Sezione B. (8) 10(3), 741–750 (2007)

    Google Scholar 

  14. Galindo, C., Monserrat, F.: On the cone of curves and of line bundles of a rational surface. Int. J. Math. 15(4), 393–407 (2004)

    Article  MathSciNet  Google Scholar 

  15. Galindo, C., Monserrat, F.: The cone of curves associated to a plane configuration. Comment. Math. Helv. 80(1), 75–93 (2005)

    Article  MathSciNet  Google Scholar 

  16. Galindo, C., Monserrat, F.: The total coordinate ring of a smooth projective surface. J. Algebra. 284(1), 91–101 (2005)

    Article  MathSciNet  Google Scholar 

  17. Galindo, C., Monserrat, F.: The cone of curves and the Cox ring of rational surfaces given by divisorial valuations. Adv. Math. 290, 1040–1061 (2016)

    Article  MathSciNet  Google Scholar 

  18. Galindo, C., Hernando, F., Monserrat, F.: The log-canonical threshold of a plane curve. Math. Proc. Camb. Philos. Soc. 160(3), 513–535 (2016)

    Article  MathSciNet  Google Scholar 

  19. Harbourne, B.: Blowings-up of \(\mathbb {P} ^{2}\) and their blowings-down. Duke Math. J. 52(1), 129–148 (1985)

    Article  MathSciNet  Google Scholar 

  20. Harbourne, B.: Complete linear systems on rational surfaces. Trans. Am. Math. Soc. 289(1), 213–226 (1985)

    Article  MathSciNet  Google Scholar 

  21. Harbourne, B.: The geometry of rational surfaces and Hilbert functions of points in the plane. In: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, CMS Conference Proceedings, vol. 6, pp. 95–111. American Mathematical Society, Providence (1986)

    Google Scholar 

  22. Harbourne, B., Lang, W.E.: Multiple fibers on rational surfaces. Trans. Am. Math. Soc. 307(1), 205–223 (1988)

    Article  MathSciNet  Google Scholar 

  23. Harbourne, B.: Hilbert functions of points in good position in \(\mathbb {P}^{2}\). The Curves Seminar at Queen’s, vol. VI (Kingston, ON, 1989), Exp. No. G, 8 pp., Queen’s Papers in Pure and Applied Mathematics, vol. 83. Queen’s University, Kingston (1989)

    Google Scholar 

  24. Harbourne, B.: Free resolutions of fat point ideals on P 2. J. Pure Appl. Algebra. 125(1–3), 213–234 (1998)

    Article  MathSciNet  Google Scholar 

  25. Harbourne, B.: Points in good position in P 2. Zero-dimensional schemes (Ravello, 1992), pp. 213–229. de Gruyter, Berlin (1994)

    Google Scholar 

  26. Harbourne, B.: Rational surfaces with K 2 > 0. Proc. Am. Math. Soc. 124(3), 727–733 (1996)

    Article  Google Scholar 

  27. Harbourne, B.: Anticanonical rational surfaces. Trans. Am. Math. Soc. 349 (3), 1191–1208 (1997)

    Article  MathSciNet  Google Scholar 

  28. Harbourne, B.: Global aspects of the geometry of surfaces. Ann. Univ. Paedagog. Crac. Stud. Math. 9, 5–41 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Harbourne, B., Miranda, R.: Exceptional curves on rational numerically elliptic surfaces. J. Algebra. 128, 405–433 (1990)

    Article  MathSciNet  Google Scholar 

  30. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York/Heidelberg (1977)

    Book  Google Scholar 

  31. Hu, Y., Keel, S.: Mori dream spaces and GIT. Michigan Math. J. 48, 331–348 (2000)

    Article  MathSciNet  Google Scholar 

  32. Laface, A., Velasco, M.: A survey on Cox rings. Geom. Dedicata. 139, 269–287 (2009)

    Article  MathSciNet  Google Scholar 

  33. Lahyane, M.: Rational surfaces having only a finite number of exceptional curves. Math. Z. 247 (1), 213–221 (2004)

    Article  MathSciNet  Google Scholar 

  34. Lahyane, M.: Exceptional curves on smooth rational surfaces with − K not nef and of self-intersection zero. Proc. Am. Math. Soc. 133, 1593–1599 (2005)

    Article  MathSciNet  Google Scholar 

  35. Lahyane, M., Harbourne, B.: Irreducibility of − 1-classes on anticanonical rational surfaces and finite generation of the effective monoid. Pac. J. Math. 218(1), 101–114 (2005)

    Article  MathSciNet  Google Scholar 

  36. Lahyane, M., Failla G., Moreno Mejía, I.: On the vanishing of cohomology of divisors on nonsingular rational surfaces. Int. J. Contemporary Mathematical Sciences 3(21–24), 1031–1040 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Lahyane, M.: On the finite generation of the effective monoid of rational surfaces. J. Pure Appl. Algebra. 214, 1217–1240 (2010)

    Article  MathSciNet  Google Scholar 

  38. Looijenga, E.: Rational surfaces with an anticanonical cycle. Ann. Math. (2). 114(2), 267–322 (1981)

    Article  Google Scholar 

  39. Nagata, M.: On rational surfaces. II. Mem. Coll. Sci. Univ. Tokyo Ser. Math. 33 (2), 271–293 (1960)

    MATH  Google Scholar 

  40. Miranda, R., Persson, U.: On extremal rational elliptic surfaces. Math. Z. 193, 537–558 (1986)

    Article  MathSciNet  Google Scholar 

  41. Monserrat, F.: Lins Neto’s examples of foliations and the Mori cone of blow-ups of P 2. Bull. Lond. Math. Soc. 43, 335–346 (2011)

    Article  MathSciNet  Google Scholar 

  42. Monserrat, F.: Fibers of pencils of curves on smooth surfaces. Int. J. Math. 22(10), 1433–1437 (2011)

    Article  MathSciNet  Google Scholar 

  43. Testa, D., Várilly-Alvarado, A., Velasco, M.: Big rational surfaces. Math. Ann. 351(1), 95–107 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous Referees for their comments and suggestions regarding this work. This research paper was partially supported by a grant from the group GNSAGA of INdAM, and another one from the Coordinación de Investigación Científica de la Universidad Michoacana de San Nicolás de Hidalgo during 2017 and 2018. De La Rosa-Navarro was supported by “Programa para el Desarrollo Profesional Docente, para el Tipo Superior” under the Grant Number UABC-PTC-558. Frías-Medina acknowledges the financial support of “Fondo Institucional de Fomento Regional para el Desarrollo Científico, Tecnológico y de Innovación”, FORDECYT 265667, during 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Lahyane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De La Rosa-Navarro, B.L., Failla, G., Frías-Medina, J.B., Lahyane, M., Utano, R. (2018). Platonic Surfaces. In: Greuel, GM., Narváez Macarro, L., Xambó-Descamps, S. (eds) Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics. Springer, Cham. https://doi.org/10.1007/978-3-319-96827-8_12

Download citation

Publish with us

Policies and ethics