Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 226))

Abstract

Let Xr be a smooth Del Pezzo surface obtained from ℙ(2 by blowing up r ⩽8 points in general position. It is well known that for r ε {3,4,5,6,7,8} the Picard group Pic(X r ) contains a canonical root system R r A 2 × A1, A4, D5, E6, E7, E8. We prove some general properties of the Cox ring of X r (r ⩾ 4) and show its similarity to the homogeneous coordinate ring of the orbit of the highest weight vector in some irreducible representation of the algebraic group G associated with the root system R r .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. A. Cox — The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17–50.

    MATH  MathSciNet  Google Scholar 

  2. J.-L. Colliot-Thélène & J.-J. Sansuc — La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Demazure & H. C. Pinkham (eds.) — Séminaire sur les Singularités des Surfaces, Lecture Notes in Mathematics, vol. 777, Springer, Berlin, 1980.

    Google Scholar 

  4. R. Friedman & J. W. Morgan — Exceptional groups and Del Pezzo surfaces, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), Contemp. Math., vol. 312, Amer. Math. Soc, Providence, RI, 2002, 101–116.

    Google Scholar 

  5. Y. Hu & S. Keel — Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331–348.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Hassett & Y. Tschinkel — Universal torsors and Cox rings, this volume, 2003.

    Google Scholar 

  7. J. E. HumphreysLinear Algebraic Groups, Springer-Verlag, New York, 1975.

    Book  MATH  Google Scholar 

  8. M. M. Kapranov — Chow quotients of Grassmannians. I, I. M. Gel’fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc, Providence, RI, 1993, 29–110.

    Google Scholar 

  9. N. LeungADE-bundle over rational surfaces, configuration of lines and rulings, math.AG/0009192, 2000.

    Google Scholar 

  10. W. Lichtenstein — A system of quadrics describing the orbit of the highest weight vector, Proc. Amer. Math. Soc. 84 (1982), no. 4, 605–608.

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Lakshmibai, C. Musili & C. S. Seshadri — Geometry of G/P. III. Standard monomial theory for a quasi-minuscule P, Proc. Indian Acad. Sci. Sect. A Math. Sci. 88 (1979), no. 3, 93–177.

    MATH  MathSciNet  Google Scholar 

  12. V. Lakshmibai & C. S. Seshadri — Geometry of G/P. V, J. Algebra 100 (1986), no. 2, 462–557.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Lancaster & J. Towber — Representation-functors and flag-algebras for the classical groups. I, J. Algebra 59 (1979), no. 1, 16–38.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. I. ManinCubic Forms, second ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986.

    Google Scholar 

  15. M. Nagata — On rational surfaces. I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32 (1960), 351–370.

    MATH  MathSciNet  Google Scholar 

  16. M. Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 271–293.

    Google Scholar 

  17. A. Ramanathan — Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), no. 2, 283–294.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. S. Seshadri — Geometry of G/P. I. Theory of standard monomials for minuscule representations, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin, 1978, 207–239.

    Google Scholar 

  19. A.N. Skorobogatov — On a theorem of Enriques-Swinnerton-Dyer, Ann. Fac. Sci. Toulouse Math. (6)2 (1993), no. 3, 429–440.

    Article  MathSciNet  Google Scholar 

  20. A. SkorobogatovTorsors and Rational Points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Batyrev, V.V., Popov, O.N. (2004). The Cox Ring of a Del Pezzo Surface. In: Poonen, B., Tschinkel, Y. (eds) Arithmetic of Higher-Dimensional Algebraic Varieties. Progress in Mathematics, vol 226. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8170-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8170-8_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6471-2

  • Online ISBN: 978-0-8176-8170-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics