Skip to main content
Log in

A survey on Cox rings

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We survey the construction of the Cox ring of an algebraic variety X and study the birational geometry of X when its Cox ring is finitely generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batyrev, V., Popov, O.:The Cox ring of a Del Pezzo surface, arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, pp. 85–103. Birkhauser Boston, Boston, MA (2004)

  2. Berchtold F., Hausen J.: Homogeneous coordinates for algebraic varieties. J. Algebra 266(2), 636–670 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berchtold F., Hausen J.: GIT equivalence beyond the ample cone. Michi. Math. J. 54(2), 483–515 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berchtold F., Hausen J.: Cox rings and combinatorics. Trans. Am. Math. Soc. 359(3), 1205–1252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.:Existence of minimal models for varieties of log general type. http://arxiv.org/pdf/math/0610203v2

  6. Brion, M.: The total coordinate ring of a wonderful variety (2006). http://arxiv.org/pdf/math/0603157v3.

  7. Castravet A.M., Tevelev J.: Hilbert’s 14th problem and Cox rings. Compos. Math. 142(6), 1479–1498 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colliot-Thelene, J.-L., Sansuc, J.-J.: La descente sur les varietes rationnelles, Journees de Geometrie Algebrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 223–237. Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md. (1980)

  9. Cox D.: The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4(1), 17–50 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Cox, D., Little, J., Schenck, H.: Toric varieties. http://www.cs.amherst.edu/~dac/toric.html, In preparation

  11. Debarre O.: Higher Dimensional Algebraic Geometry. Universitext, Springer-Verlag, New York (2001)

    MATH  Google Scholar 

  12. Elizondo E.J., Kazuhiko K., Watanabe K.: The total coordinate ring of a normal projective variety. J. Algebra 276(2), 625–637 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fulton W.: Introduction to Toric Varieties. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  14. Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  15. Hassett, B., Tschinkel, Y.: Universal Torsors and Cox rings, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226. Birkhauser Boston, Boston, MA (2004)

  16. Hu Y., Keel S.: Mori dream spaces and GIT. Mich. Math. J. 48, 331–348 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kajiwara T.: The functor of a toric variety with enough invariant effective Cartier divisors. Tohoku Math. J. (2) 50(1), 139–157 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Knop F.: Ueber Hilberts vierzehntes Problem fuer Varietaeten mit Kompliziertheit eins. Math. Z. 213(1), 33–36 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Laface, A., Velasco, M.: Picard-graded Betti numbers and the defining ideals of Cox rings. http://arxiv.org/pdf/0707.3251v1

  20. Oda T., Park H.S.: Linear Gale transforms and Gelfand-Kapranov-Zelevinskij decompositions. Tohoku Math. J. 43, 375–399 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peyre, E.: Counting points on varieties using universal torsors, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, pp. 61–68. Birkhauser Boston, Boston, MA (2004)

  22. Serganova V., Skorobogatov A.: Del Pezzo surfaces and representation theory. Algebra Number Theory 1, 393–419 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stillman M., Testa D., Velasco M.: Gröbner bases, monomial group actions, and the Cox rings of del Pezzo surfaces. J. Algebra 316(2), 777–801 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sturmfels, B., Xu, Z.: Sagbi bases of Cox-Nagata rings. http://arxiv.org/pdf/0803.0892

  25. Testa, D., Várilly-Alvarado, A., Velasco, M.: Cox rings of degree one Del Pezzo surfaces. http://arxiv.org/pdf/0803.0353.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Laface.

Additional information

Basic notation. Throughout this paper k is an algebraically closed field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laface, A., Velasco, M. A survey on Cox rings. Geom Dedicata 139, 269–287 (2009). https://doi.org/10.1007/s10711-008-9329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9329-y

Keywords

Mathematics Subject Classification (2000)

Navigation