Skip to main content

Novel Focal Treatment Modalities in Glioma Management

  • Chapter
  • First Online:
Epilepsy Surgery and Intrinsic Brain Tumor Surgery

Abstract

Malignant gliomas, including glioblastomas (GBMs) and anaplastic astrocytomas (AAs), remain difficult to treat. Overall prognosis for patients harboring these tumors is poor despite maximal surgical resection with appropriate chemotherapy and radiation. Here we outline several novel treatment modalities for focal control of malignant gliomas. The first set of therapies described rely on bypassing the blood brain barrier (BBB) to better deliver chemotherapeutics directly to the tumor and tumor cells infiltrating into the brain parenchyma. These include convection-enhanced drug delivery, intra-arterial (IA) chemotherapy, focused ultrasound, and laser interstitial thermal therapy. Another modality that has shown promising tumor control is tumor treatment fields therapy, which disrupts tumor mitosis and has increased survival in some studies. We also discuss the challenges associated with these treatments and examine the future of these and other glioma management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Cancer Institute SEER Cancer Statistics Factsheets: Brain and Other Nervous System Cancer. In: Cancer stat facts: brain and other nervous system cancer. https://seer.cancer.gov/statfacts/html/brain.html. Accessed 3 Apr 2017.

  2. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91:2076–80.

    Article  CAS  Google Scholar 

  3. Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncol. 2015;17(Suppl 2):ii3–8.

    Article  CAS  Google Scholar 

  4. Abdullah KG, Burdick J. Local and topical treatment of glioblastoma. In: Brem S, Abdullah KG, editors. Glioblastoma. Philadelphia: Elsevier; 2017. p. 207–11.

    Google Scholar 

  5. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol. 2010;12:871–81.

    Article  CAS  Google Scholar 

  6. Targepeutics Inc. Development of GB-13 as a novel glioblastoma therapy. In: Small business innovation research/small business technology transfer. https://www.sbir.gov/sbirsearch/detail/372598. Accessed 28 Feb 2017.

  7. Infuseon Therapeutics Inc. Cleveland Multiport Catheter. In: Cleveland multiport catheter. http://www.infuseontherapeutics.com/Product.aspx. Accessed 28 Feb 2017.

  8. Hawasli AH, Kim AH, Dunn GP, Tran DD, Leuthardt EC. Stereotactic laser ablation of high-grade gliomas. Neurosurg Focus. 2014;37:E1.

    Article  Google Scholar 

  9. Iwadate Y, Namba H, Saegusa T, Sueyoshi K. Intra-arterial mannitol infusion in the chemotherapy for malignant brain tumors. J Neuro-Oncol. 1993;15:185–93.

    Article  CAS  Google Scholar 

  10. Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro Oncol. 2016;18:27–36.

    Article  CAS  Google Scholar 

  11. Rapoport SI, Hori M, Klatzo I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Phys. 1972;223:323–31.

    CAS  Google Scholar 

  12. Neuwelt EA, Frenkel EP, Rapoport S, Barnett P. Effect of osmotic blood-brain barrier disruption on methotrexate pharmacokinetics in the dog. Neurosurgery. 1980;7:36–43.

    Article  CAS  Google Scholar 

  13. Neuwelt EA, Barnett PA, Frenkel EP. Chemotherapeutic agent permeability to normal brain and delivery to avian sarcoma virus-induced brain tumors in the rodent: observations on problems of drug delivery. Neurosurgery. 1984;14:154–60.

    Article  CAS  Google Scholar 

  14. Neuwelt EA, Howieson J, Frenkel EP, Specht HD, Weigel R, Buchan CG, Hill SA. Therapeutic efficacy of multiagent chemotherapy with drug delivery enhancement by blood-brain barrier modification in glioblastoma. Neurosurgery. 1986;19:573–82.

    Article  CAS  Google Scholar 

  15. Neuwelt EA, Specht HD, Howieson J, Haines JE, Bennett MJ, Hill SA, Frenkel EP. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. Am J Roentgenol. 1983;141:829–35.

    Article  CAS  Google Scholar 

  16. Miyagami M, Tsubokawa T, Tazoe M, Kagawa Y. Intra-arterial ACNU chemotherapy employing 20% mannitol osmotic blood-brain barrier disruption for malignant brain tumors. Neurol Med Chir. 1990;30:582–90.

    Article  CAS  Google Scholar 

  17. Doolittle ND, Miner ME, Hall WA, Siegal T, Hanson EJ, Osztie E, et al. Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer. 2000;88:637–47.

    Article  CAS  Google Scholar 

  18. Jahnke K, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, et al. Intraarterial chemotherapy and osmotic blood-brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer. 2008;112:581–8.

    Article  Google Scholar 

  19. Guillaume DJ, Doolittle ND, Gahramanov S, Hedrick NA, Delashaw JB, Neuwelt EA. Intra-arterial chemotherapy with osmotic blood-brain barrier disruption for aggressive oligodendroglial tumors: results of a phase I study. Neurosurgery. 2010;66:48–58. discussion 58.

    Article  Google Scholar 

  20. Hall WA, Doolittle ND, Daman M, Bruns PK, Muldoon L, Fortin D, Neuwelt EA. Osmotic blood-brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neuro-Oncol. 2006;77:279–84.

    Article  CAS  Google Scholar 

  21. Riina HA, Fraser JF, Fralin S, Knopman J, Scheff RJ, Boockvar JA. Superselective intraarterial cerebral infusion of bevacizumab: a revival of interventional neuro-oncology for malignant glioma. J Exp Ther Oncol. 2009;8:145–50.

    CAS  PubMed  Google Scholar 

  22. Burkhardt J-K, Riina HA, Shin BJ, Moliterno JA, Hofstetter CP, Boockvar JA. Intra-arterial chemotherapy for malignant gliomas: a critical analysis. Interv Neuroradiol. 2011;17:286–95.

    Article  Google Scholar 

  23. Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery. 1998;42:1083–99. discussion, 1099–100.

    Article  CAS  Google Scholar 

  24. Riina HA, Knopman J, Greenfield JP, Fralin S, Gobin YP, Tsiouris AJ, et al. Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma. A technical note. Interv Neuroradiol. 2010;16:71–6.

    Article  CAS  Google Scholar 

  25. Chow KL, Gobin YP, Cloughesy T, Sayre JW, Villablanca JP, Viñuela F. Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma treated with selective intra-arterial chemotherapy. Am J Neuroradiol. 2000;21:471–8.

    CAS  PubMed  Google Scholar 

  26. Gobin YP, Cloughesy TF, Chow KL, Duckwiler GR, Sayre JW, Milanese K, Viñuela F. Intraarterial chemotherapy for brain tumors by using a spatial dose fractionation algorithm and pulsatile delivery. Radiology. 2001;218:724–32.

    Article  CAS  Google Scholar 

  27. Qureshi AI, Suri MF, Khan J, Sharma M, Olson K, Guterman LR, Hopkins LN. Superselective intra-arterial carboplatin for treatment of intracranial neoplasms: experience in 100 procedures. J Neuro-Oncol. 2001;51:151–8.

    Article  CAS  Google Scholar 

  28. Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K, et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg. 2011;114:624–32.

    Article  CAS  Google Scholar 

  29. Burkhardt J-K, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, Tsiouris AJ, Boockvar JA. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg. 2012;77:130–4.

    Article  Google Scholar 

  30. Chakraborty S, Filippi CG, Burkhardt J-K, Fralin S, Ray A, Wong T, et al. Durability of single dose intra-arterial bevacizumab after blood/brain barrier disruption for recurrent glioblastoma. J Exp Ther Oncol. 2016;11:261–7.

    Article  CAS  Google Scholar 

  31. Burkhardt J-K, Shin BJ, Schlaff CD, Riina H, Boockvar JA. Cost analysis of intra-arterial versus intra-venous delivery of bevacizumab for the treatment of recurrent glioblastoma multiforme. J Exp Ther Oncol. 2011;9:183–6.

    PubMed  Google Scholar 

  32. Chakraborty S, Filippi CG, Wong T, Ray A, Fralin S, Tsiouris AJ, et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neuro-Oncol. 2016;128:405–15.

    Article  CAS  Google Scholar 

  33. Chakraborty S, Fralin S, Ray A, Wong T, Demopoulos A, Filippi C, et al. Superselective intraarterial cerebral infusion of temozolomide after osmotic blood/brain barrier disruption for newly diagnosed malignant glioma: phase I study. J Neuro-Oncol. 2016;128(3):405–15.

    Article  CAS  Google Scholar 

  34. Leinenga G, Langton C, Nisbet R, Götz J. Ultrasound treatment of neurological diseases--current and emerging applications. Nat Rev Neurol. 2016;12:161–74.

    Article  Google Scholar 

  35. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol. 2004;30:979–89.

    Article  Google Scholar 

  36. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage. 2005;24:12–20.

    Article  Google Scholar 

  37. Chen P-Y, Liu H-L, Hua M-Y, Yang HW, Huang CY, Chu PC, et al. Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro-Oncology. 2010;12:1050–60.

    Article  CAS  Google Scholar 

  38. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl. 2003;86:555–8.

    CAS  PubMed  Google Scholar 

  39. Mesiwala AH, Farrell L, Wenzel HJ, Silbergeld DL, Crum LA, Winn HR, Mourad PD. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol. 2002;28:389–400.

    Article  Google Scholar 

  40. Sakai T, Fujishima I, Sugiyama K, Ryu H, Uemura K. Interstitial laserthermia in neurosurgery. J Clin Laser Med Surg. 1992;10:37–40.

    Article  CAS  Google Scholar 

  41. Bettag M, Ulrich F, Schober R, Fürst G, Langen KJ, Sabel M, Kiwit JC. Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl. 1991;52:81–3.

    Article  CAS  Google Scholar 

  42. Nakagawa M, Matsumoto K, Higashi H, Furuta T, Ohmoto T. Acute effects of interstitial hyperthermia on normal monkey brain--magnetic resonance imaging appearance and effects on blood-brain barrier. Neurol Med Chir. 1994;34:668–75.

    Article  CAS  Google Scholar 

  43. Leuthardt EC, Duan C, Kim MJ, Campian JL, Kim AH, Miller-Thomas MM, et al. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS One. 2016;11:e0148613.

    Article  Google Scholar 

  44. Sabel M, Rommel F, Kondakci M, Gorol M, Willers R, Bilzer T. Locoregional opening of the rodent blood-brain barrier for paclitaxel using Nd:YAG laser-induced thermo therapy: a new concept of adjuvant glioma therapy? Lasers Surg Med. 2003;33:75–80.

    Article  Google Scholar 

  45. Thomas JG, Rao G, Kew Y, Prabhu SS. Laser interstitial thermal therapy for newly diagnosed and recurrent glioblastoma. Neurosurg Focus. 2016;41:E12.

    Article  Google Scholar 

  46. Mohammadi AM, Hawasli AH, Rodriguez A, Schroeder JL, Laxton AW, Elson P, et al. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014;3:971–9.

    Article  Google Scholar 

  47. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64:3288–95.

    Article  CAS  Google Scholar 

  48. Fonkem E, Wong ET. NovoTTF-100A: a new treatment modality for recurrent glioblastoma. Expert Rev Neurother. 2012;12:895–9.

    Article  CAS  Google Scholar 

  49. Swanson KD, Lok E, Wong E. Tumor-treating electric fields for glioblastoma. In: Brem S, Abdullah KG, editors. Glioblastoma. Philadelphia: Elsevier; 2016. p. 213–24.

    Chapter  Google Scholar 

  50. Chaput N, De Botton S, Obeid M, Apetoh L, Ghiringhelli F, Panaretakis T, et al. Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med. 2007;85:1069–76.

    Article  CAS  Google Scholar 

  51. Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS One. 2015;10:e0125269.

    Article  Google Scholar 

  52. Wong ET, Lok E, Gautam S, Swanson KD. Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br J Cancer. 2015;113:232–41.

    Article  CAS  Google Scholar 

  53. Lok E, Swanson KD, Wong ET. Tumor treating fields therapy device for glioblastoma: physics and clinical practice considerations. Expert Rev Med Devices. 2015;12:717–26.

    Article  CAS  Google Scholar 

  54. Kirson ED, Dbalý V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci U S A. 2007;104:10152–7.

    Article  CAS  Google Scholar 

  55. Rulseh AM, Keller J, Klener J, Sroubek J, Dbalý V, Syrůček M, et al. Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World J Surg Oncol. 2012;10:220.

    Article  Google Scholar 

  56. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48:2192–202.

    Article  Google Scholar 

  57. Mrugala MM, Engelhard HH, Dinh Tran D, Steinberg D, Engelhard H, Heidecke V, et al. Clinical practice experience with NovoTTF-100A™ system for glioblastoma: The Patient Registry Dataset (PRiDe). Semin Oncol. 2014;41(Suppl.6):S4–S13.

    Article  Google Scholar 

  58. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314:2535–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S., Wagner, K., Boockvar, J., Schulder, M. (2019). Novel Focal Treatment Modalities in Glioma Management. In: Fountas, K., Kapsalaki, E. (eds) Epilepsy Surgery and Intrinsic Brain Tumor Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95918-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95918-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95917-7

  • Online ISBN: 978-3-319-95918-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics