Skip to main content

Advertisement

Log in

Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2016

Abstract

Objective To establish a maximum tolerated dose of superselective intraarterial cerebral infusion (SIACI) of Cetuximab after osmotic disruption of the blood–brain barrier (BBB) with mannitol, and examine safety of the procedure in patients with recurrent malignant glioma.

Methods A total of 15 patients with recurrent malignant glioma were included in the current study. The starting dose of Cetuximab was 100 mg/m2 and dose escalation was done to 250 mg/m2. All patients were observed for 28 days post-infusion for any side effects.

Results There was no dose-limiting toxicity from a single dose of SIACI of Cetuximab up to 250 mg/m2 after osmotic BBB disruption with mannitol. A tolerable rash was seen in 2 patients, anaphylaxis in 1 patient, isolated seizure in 1 patient, and seizure and cerebral edema in 1 patient.

Discussion SIACI of mannitol followed by Cetuximab (up to 250 mg/m2) for recurrent malignant glioma is safe and well tolerated. A Phase I/II trial is currently underway to determine the efficacy of SIACI of cetuximab in patients with high-grade glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Institute NC (2015) SEER cancer statistics factsheets: brain and other nervous system cancer. http://seer.cancer.gov/statfacts/html/brain.html. Accessed 31 Aug 2015

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, Groups EOfRaToCBTaR, Group NCIoCCT (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  3. Hasselbalch B, Eriksen JG, Broholm H, Christensen IJ, Grunnet K, Horsman MR, Poulsen HS, Stockhausen MT, Lassen U (2010) Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan. APMIS 118:585–594. doi:10.1111/j.1600-0463.2010.02631.x

    CAS  PubMed  Google Scholar 

  4. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lütolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899. doi:10.1158/0008-5472.CAN-04-1337

    Article  CAS  PubMed  Google Scholar 

  5. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172

    CAS  PubMed  Google Scholar 

  6. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, O’Fallon JR, Schaefer PL, Scheithauer BW, James CD, Buckner JC, Jenkins RB (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256

    Article  CAS  PubMed  Google Scholar 

  7. Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387

    CAS  PubMed  Google Scholar 

  8. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311. doi:10.1016/j.ccr.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  9. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318

    CAS  PubMed  Google Scholar 

  10. Hasselbalch B, Lassen U, Hansen S, Holmberg M, Sørensen M, Kosteljanetz M, Broholm H, Stockhausen MT, Poulsen HS (2010) Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 12:508–516. doi:10.1093/neuonc/nop063

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baselga J, Gómez P, Greil R, Braga S, Climent MA, Wardley AM, Kaufman B, Stemmer SM, Pêgo A, Chan A, Goeminne JC, Graas MP, Kennedy MJ, Ciruelos Gil EM, Schneeweiss A, Zubel A, Groos J, Melezínková H, Awada A (2013) Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol 31:2586–2592. doi:10.1200/JCO.2012.46.2408

    Article  CAS  PubMed  Google Scholar 

  12. Kies MS, Holsinger FC, Lee JJ, William WN, Glisson BS, Lin HY, Lewin JS, Ginsberg LE, Gillaspy KA, Massarelli E, Byers L, Lippman SM, Hong WK, El-Naggar AK, Garden AS, Papadimitrakopoulou V (2010) Induction chemotherapy and cetuximab for locally advanced squamous cell carcinoma of the head and neck: results from a phase II prospective trial. J Clin Oncol 28:8–14. doi:10.1200/JCO.2009.23.0425

    Article  CAS  PubMed  Google Scholar 

  13. Doi T, Muro K, Yoshino T, Fuse N, Ura T, Takahari D, Feng HP, Shimamoto T, Noguchi K, Ohtsu A (2013) Phase 1 pharmacokinetic study of MK-0646 (dalotuzumab), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in combination with cetuximab and irinotecan in Japanese patients with advanced colorectal cancer. Cancer Chemother Pharmacol 72:643–652. doi:10.1007/s00280-013-2240-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshino T, Hasegawa Y, Takahashi S, Monden N, Homma A, Okami K, Onozawa Y, Fujii M, Taguchi T, de Blas B, Beier F, Tahara M (2013) Platinum-based chemotherapy plus cetuximab for the first-line treatment of Japanese patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck: results of a phase II trial. Jpn J Clin Oncol 43:524–531. doi:10.1093/jjco/hyt034

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP, Vega-Villegas ME, Eng C, Steinhauer EU, Prausova J, Lenz HJ, Borg C, Middleton G, Kröning H, Luppi G, Kisker O, Zubel A, Langer C, Kopit J, Burris HA (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319. doi:10.1200/JCO.2007.13.1193

    Article  CAS  PubMed  Google Scholar 

  16. Abdelwahab S, Azmy A, Abdel-Aziz H, Salim H, Mahmoud A (2012) Anti-EGFR (cetuximab) combined with irinotecan for treatment of elderly patients with metastatic colorectal cancer (mCRC). J Cancer Res Clin Oncol 138:1487–1492. doi:10.1007/s00432-012-1229-8

    Article  CAS  PubMed  Google Scholar 

  17. Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF, D’Hondt L, Strauven T, Chaskis C, In’t Veld P, Michotte A, De Greve J (2009) Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol 20:1596–1603. doi:10.1093/annonc/mdp032

    Article  CAS  PubMed  Google Scholar 

  18. Belda-Iniesta C, JeC Carpeño, Saenz EC, Gutiérrez M, Perona R, Barón MG (2006) Long term responses with cetuximab therapy in glioblastoma multiforme. Cancer Biol Ther 5:912–914

    Article  CAS  PubMed  Google Scholar 

  19. Stewart DJ (1989) Pros and cons of intra-arterial chemotherapy. Oncology (Williston Park) 3:20–26 discussion 26-27, 30, 32

    Google Scholar 

  20. Kroll RA, Neuwelt EA (1998) Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083–1099

    Article  CAS  PubMed  Google Scholar 

  21. Burkhardt JK, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, Tsiouris AJ, Boockvar JA (2012) Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg 77:130–134. doi:10.1016/j.wneu.2011.05.056

    Article  PubMed  Google Scholar 

  22. Database NIoHCT (2015) Super-selective intraarterial cerebral infusion of cetuximab (erbitux) for treatment of relapsed/refractory GBM and AA. National Institutes of Health. https://clinicaltrials.gov/show/NCT01238237. Accessed 2 Sept 2015

  23. Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K, Seedial SM, Pannullo SC, Schwartz TH, Stieg P, Zimmerman RD, Knopman J, Scheff RJ, Christos P, Vallabhajosula S, Riina HA (2011) Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg 114:624–632. doi:10.3171/2010.9.JNS101223

    Article  CAS  PubMed  Google Scholar 

  24. Iwadate Y, Namba H, Saegusa T, Sueyoshi K (1993) Intra-arterial ACNU, CDDP chemotherapy for brain metastases from lung cancer: comparison of cases with and without intra-arterial mannitol infusion. No Shinkei Geka 21:513–518

    CAS  PubMed  Google Scholar 

  25. Iwadate Y, Namba H, Sueyoshi K (1995) Intra-arterial ACNU and cisplatin chemotherapy for the treatment of glioblastoma multiforme. Neurol Med Chir (Tokyo) 35:598–603

    Article  CAS  Google Scholar 

  26. Stewart DJ, Benjamin RS, Zimmerman S, Caprioli RM, Wallace S, Chuang V, Calvo D, Samuels M, Bonura J, Loo TL (1983) Clinical pharmacology of intraarterial cis-diamminedichloroplatinum(II). Cancer Res 43:917–920

    CAS  PubMed  Google Scholar 

  27. Namba H, Kobayashi S, Iwadate Y, Saegusa T, Sato A, Watanabe Y, Sueyoshi K (1994) Assessment of the brain areas perfused by superselective intra-arterial chemotherapy using single photon emission computed tomography with technetium-99m-hexamethyl-propyleneamine oxime–technical note. Neurol Med Chir (Tokyo) 34:832–835

    Article  CAS  Google Scholar 

  28. Levin VA, Kabra PM, Freeman-Dove MA (1978) Pharmacokinetics of intracarotid artery 14C-BCNU in the squirrel monkey. J Neurosurg 48:587–593. doi:10.3171/jns.1978.48.4.0587

    Article  CAS  PubMed  Google Scholar 

  29. Neuwelt EA, Gilmer-Knight K, Lacy C, Nicholson HS, Kraemer DF, Doolittle ND, Hornig GW, Muldoon LL (2006) Toxicity profile of delayed high dose sodium thiosulfate in children treated with carboplatin in conjunction with blood-brain-barrier disruption. Pediatr Blood Cancer 47:174–182. doi:10.1002/pbc.20529

    Article  PubMed  Google Scholar 

  30. Hall WA, Doolittle ND, Daman M, Bruns PK, Muldoon L, Fortin D, Neuwelt EA (2006) Osmotic blood-brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neurooncol 77:279–284. doi:10.1007/s11060-005-9038-4

    Article  CAS  PubMed  Google Scholar 

  31. Iwadate Y, Namba H, Saegusa T, Sueyoshi K (1993) Intra-arterial mannitol infusion in the chemotherapy for malignant brain tumors. J Neurooncol 15:185–193

    Article  CAS  PubMed  Google Scholar 

  32. Neuwelt EA, Abbott NJ, Drewes L, Smith QR, Couraud PO, Chiocca EA, Audus KL, Greig NH, Doolittle ND (1999) Cerebrovascular biology and the various neural barriers: challenges and future directions. Neurosurgery 44:604–608 discussion 608–609

    Article  CAS  PubMed  Google Scholar 

  33. Neuwelt EA, Specht HD, Hill SA (1986) Permeability of human brain tumor to 99mTc-gluco-heptonate and 99mTc-albumin. Implications for monoclonal antibody therapy. J Neurosurg 65:194–198. doi:10.3171/jns.1986.65.2.0194

    Article  CAS  PubMed  Google Scholar 

  34. Neuwelt EA, Barnett PA, McCormick CI, Frenkel EP, Minna JD (1985) Osmotic blood-brain barrier modification: monoclonal antibody, albumin, and methotrexate delivery to cerebrospinal fluid and brain. Neurosurgery 17:419–423

    Article  CAS  PubMed  Google Scholar 

  35. Neuwelt EA, Howieson J, Frenkel EP, Specht HD, Weigel R, Buchan CG, Hill SA (1986) Therapeutic efficacy of multiagent chemotherapy with drug delivery enhancement by blood-brain barrier modification in glioblastoma. Neurosurgery 19:573–582

    Article  CAS  PubMed  Google Scholar 

  36. Riina HA, Knopman J, Greenfield JP, Fralin S, Gobin YP, Tsiouris AJ, Souweidane MM, Boockvar JA (2010) Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma. A technical note. Interv Neuroradiol 16:71–76

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Marc Symons, Maria Rugierri, Apostolos Tsiouris, Jared Knopman, Pierre Gobin, Howard Riina, Phillip Stieg, Susan Pannullo, Theodore Schwartz, Jeff Greenfield, Melissa Ricketts, and Karissa Tan for their assistance in the data collection and administrative support of this trial. Additional thanks to Julie Devi Coats for her help with figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Boockvar.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Filippi, C.G., Wong, T. et al. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neurooncol 128, 405–415 (2016). https://doi.org/10.1007/s11060-016-2099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2099-8

Keywords

Navigation