Skip to main content

Methanogens: Syntrophic Metabolism

  • Reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Abstract

Syntrophy is a mutualistic interaction in which two metabolically different types of microorganisms are linked by the need to keep metabolites exchanged between the two partners at low concentrations to make the overall metabolism of both organisms feasible. In most cases, the cooperation is based on the transfer of hydrogen, formate, or acetate from fermentative bacteria to methanogens to make the degradation of electron-rich substrates thermodynamically favorable. Syntrophic metabolism proceeds at very low Gibbs’ free energy changes, close to the minimum free energy change needed to conserve energy biologically, which is the energy needed to transport one proton across the cytoplasmic membrane. Pathways for syntrophic degradation of fatty acids predict the net synthesis of about one-third of an ATP per round of catabolism. Syntrophic metabolism entails critical oxidation-reduction reactions in which H2 or formate production would be thermodynamically unfavorable unless energy is invested. Molecular insights into the membrane processes involved in ion translocation and reverse electron transport revealed that syntrophs harbor multiple systems for reverse electron transfer. While much evidence supports the interspecies transfer of H2 and formate, other mechanisms of interspecies electron transfer exist including cysteine cycling and possibly direct interspecies electron transfer as electric current via conductive pili or (semi)conductive minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    CAS  PubMed  Google Scholar 

  • Beatrix B, Bendrat K, Rospert S, Buckel W (1990) The biotin-dependent sodium ion pump glutaconyl-CoA decarboxylase from Fusobacterium nucleatum (subsp. nucleatum). Comparison with the glutaconyl-CoA decarboxylases from gram-positive bacteria. Arch Microbiol 154:362–369

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Albracht SS, Fuchs G (1997) Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosine triphosphatase activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. Eur J Biochem 244:840–851

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Fuchs G (1998) Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 251:946–954

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Fuchs G, Tilley G, Armstrong FA, Lowe DJ (2000) Unusual spectroscopic and electrochemical properties of the 2[4Fe-4S] ferredoxin of Thauera aromatica. Biochemist 39:4929–4938

    Article  CAS  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breese K, Fuchs G (1998) 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from the denitrifying bacterium Thauera aromatica – prosthetic groups, electron donor, and genes of a member of the molybdenum-flavin-iron-sulfur proteins. Eur J Biochem 251:916–923

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  • Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rotaru A-E, Shrestha PM (2014) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell FS, Boyd S, Delwiche ME, Reed DW, Phelps TJ, Newby DT (2008) Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin. Appl Environ Microbiol 74:3444–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad R, Phelps TJ, Zeikus JG (1985) Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol 50:595–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crable BR, Sieber JR, Mao X, Alvarez-Cohen L, Gunsalus RP, Ogorzalek Loo RR, Nguyen H, McInerney MJ (2016) Membrane complexes of Syntrophomonas wolfei involved in syntrophic butyrate degradation and hydrogen formation. Front Microbiol 7:1795. https://doi.org/10.3389/fmicb.2016.01795

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bok FAM, Luijten MLGC, Stams AJM (2002a) Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl Environ Microbiol 68:4247–4252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Bok FAM, Roze EH, Stams AJM (2002b) Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. Antonie Van Leeuwenhoek 81:283–291

    Article  PubMed  Google Scholar 

  • de Bok FAM, Hagedoorn PL, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJM (2003) Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270:2476–2485

    Article  PubMed  CAS  Google Scholar 

  • de Bok FAM, Harmsen HJM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55:1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Cheng G, Stams AJM (1994a) Butyrate oxidation by Syntrophospora bryantii in co-culture with different methanogens and in pure culture with pentenoate as electron acceptor. Appl Microbiol Biotechnol 42:647–652

    Article  CAS  Google Scholar 

  • Dong X, Plugge CM, Stams AJM (1994b) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Stams AJM (1995) Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1:35–39

    Article  CAS  PubMed  Google Scholar 

  • Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM (1988) Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl Environ Microbiol 54:1354–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P (2001) Atmospheric chemistry and greenhouse gases. In: Climate change 2001: the scientific basis, pp 239–287. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Elshahed MS, Bhupathiraju VK, Wofford NQ, Nanny MA, McInerney MJ (2001) Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by Syntrophus aciditrophicus strain SB in syntrophic association with H2-using microorganisms. Appl Environ Microbiol 67:1728–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40

    Article  CAS  PubMed  Google Scholar 

  • Friedrich M, Schink B (1993) Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. Eur J Biochem 217:233–240

    Article  CAS  PubMed  Google Scholar 

  • Friedrich M, Schink B (1995) Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium. Arch Microbiol 163:268–275

    Article  CAS  PubMed  Google Scholar 

  • Friedrich M, Springer N, Ludwig W, Schink B (1996) Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Bacteriol 46:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Gallert C, Winter J (1994) Anaerobic degradation of 4-hydroxybenzoate: reductive dehydroxylation of 4-hydroxybenzoyl-CoA and ATP formation during 4-hydroxybenzoate decarboxylation by the phenol-metabolizing bacteria of a stable, strictly anaerobic consortium. Appl Microbiol Biotechnol 42:408–414

    Article  CAS  Google Scholar 

  • Galushko AS, Schink B (2000) Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Arch Microbiol 174:314–321

    Article  CAS  PubMed  Google Scholar 

  • Gibson J, Dispensa M, Fogg GC, Evans DT, Harwood CS (1994) 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation. J Bacteriol 176:634–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson J, Dispensa M, Harwood CS (1997) 4-hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate by Rhodopseudomonas palustris and shares features with molybdenum-containing hydroxylases. J Bacteriol 179:634–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1998) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458

    Article  CAS  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Luo H, Shoun H, Kamagata Y (2001) Involvement of formate as an interspecies electron carrier in a syntrophic acetate-oxidizing anaerobic microorganism in coculture with methanogens. J Biosci Bioeng 91:294–298

    Article  CAS  PubMed  Google Scholar 

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127

    Article  PubMed  Google Scholar 

  • Hedderich R, Whitman WB (2006) Physiology and biochemistry of the methane-producing archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, vol 2, 3rd edn. Springer, New York, pp 1050–1079

    Chapter  Google Scholar 

  • Heider J, Fuchs G (1997a) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Fuchs G (1997b) Microbial anaerobic aromatic metabolism. Anaerobe 3:1–22

    Article  CAS  PubMed  Google Scholar 

  • Hirsch W, Schagger H, Fuchs G (1998) Phenylglyoxylate:NAD+ oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii. Eur J Biochem 251:907–915

    Article  CAS  PubMed  Google Scholar 

  • Hoehler T (2004) Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:205–215

    Article  Google Scholar 

  • Houwen FP, Plokker J, Stams AJM, Zehnder AJB (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55

    Article  CAS  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735

    CAS  PubMed  Google Scholar 

  • IPCC Climate change 2014: mitigation of climate change (2014) Contribution of working group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71:7838–7845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  PubMed  Google Scholar 

  • James KL, Ríos-Hernández LA, Wofford NQ, Mouttaki H, Sieber JR, Sheik CS, Nguyen HH, Yang Y, Xie Y, Erde J, Rohlin L, Karr EA, Loo JA, Ogorzalek Loo RR, Hurst GB, Gunsalus RP, Szweda LI, McInerney MJ (2016) Pyrophosphate-dependent ATP formation from acetyl coenzyme A in Syntrophus aciditrophicus, a new twist on ATP formation. MBio 7:e01208-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaden J, Galushko AS, Schink B (2002) Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol 178:53–58

    Article  CAS  PubMed  Google Scholar 

  • Kaiser JP, Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch Microbiol 133:185–194

    Article  CAS  Google Scholar 

  • Kato S, Kosaka T, Watanabe K (2009) Substrate-dependent transcriptomic shifts in Pelotomaculum thermopropionicum grown in syntrophic co-culture with Methanothermobacter thermautotrophicus. Microb Biotechnol 2:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012a) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14:1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012b) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci 109:10042–10046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall MM, Liu Y, Boone DR (2006) Butyrate- and propionate-degrading syntrophs from permanently cold marine sediments in Skan Bay, Alaska, and description of Algorimarina butyrica gen. nov., sp. nov. FEMS Microbiol Lett 262:107–114

    Article  CAS  PubMed  Google Scholar 

  • Kosaka T, Uchiyama T, Ishii S, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188:202–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka T, Kato S, Shimoyama T, Ishii S, Abe T, Watanabe K (2008) The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res 18:442–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:477

    PubMed  PubMed Central  Google Scholar 

  • Krumholz LR, Bryant MP (1986) Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143:313–318

    Article  CAS  Google Scholar 

  • Kung JW, Löffler C, Dörner K, Heintz D, Gallien S, Dorsselaer AV, Friedrich A, Boll M (2009) Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci U S A 106:17687–17692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung JW, Seifert J, von Bergen M, Boll M (2013) Cyclohexanecarboxyl-coenzyme A (CoA) and cyclohex-1-ene-1-carboxyl-CoA dehydrogenases, two enzymes involved in the fermentation of benzoate and crotonate in Syntrophus aciditrophicus. J Bacteriol 195:3193–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung JW, Meier AK, Mergelsberg M, Boll M (2014) Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway. J Bacteriol 196:3667–3674

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow HH, Boll M (2008) 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 10:1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Zinder SH (1988a) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch Microbiol 150:513–518

    Article  CAS  Google Scholar 

  • Lee MJ, Zinder SH (1988b) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2–CO2. Appl Environ Microbiol 54:124–129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jorgensen BB (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 39:688–728

    Article  CAS  PubMed  Google Scholar 

  • Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chang J, Liu P, Fu L, Ding D, Lu Y (2015) Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ Microbiol 17:1533–1547

    Article  PubMed  CAS  Google Scholar 

  • Li X, McInerney MJ, Stahl DA, Krumholz LR (2011) Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate. Microbiology 151:2912–2921

    Article  CAS  Google Scholar 

  • Liu FH, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. In: Wiegel J, Maier RJ, Adams MW (eds) Incredible anaerobes from physiology to genomics to fuels, 1st edn. Annals of the New York academy of sciences, vol 1125. pp 171–189. Blackwell Publishing, Oxford, United Kingdom

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  PubMed  Google Scholar 

  • Lorowitz WH, Zhao H, Bryant MP (1989) Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium. Int J Syst Bacteriol 39:122–126

    Article  CAS  Google Scholar 

  • Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26(3):152–157

    Article  CAS  Google Scholar 

  • Manzoor S, Bongcam-Rudloff E, Schnurer A, Muller B (2016) Genome-guided analysis and whole transcriptome profiling of the mesophilic syntrophic acetate oxidising bacterium Syntrophaceticus schinkii. PLoS One 11:e0166520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarty PL (1971) Energetics and kinetics of anaerobic treatment. In: Anaerobic biological treatment processes, pp 91–107 ACS Publishers

    Google Scholar 

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104:7600–7605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. In: Wiegel J, Maier RJ, Adams MW (eds) Incredible anaerobes from physiology to genomics to fuels, 1st edn. Annals of the New York academy of sciences, vol 1125. pp 58–72. Blackwell Publishing, Oxford, United Kingdom

    Article  CAS  PubMed  Google Scholar 

  • Merkel SM, Eberhard AE, Gibson J, Harwood CS (1989) Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. J Bacteriol 171:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207

    Article  Google Scholar 

  • Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133:249–256

    Article  CAS  Google Scholar 

  • Mouttaki H, Nanny MA, McInerney MJ (2007) Cyclohexane carboxylate and benzoate formation from crotonate in Syntrophus aciditrophicus. Appl Environ Microbiol 73:930–938

    Article  CAS  PubMed  Google Scholar 

  • Mouttaki H, Nanny MA, McInerney MJ (2008) Use of benzoate as an electron acceptor by Syntrophus acidotropicus grown in pure culture with crotonate. Environ Microbiol 10(12):3265–3274

    Article  CAS  PubMed  Google Scholar 

  • Mouttaki H, Nanny MA, McInerney MJ (2009) Metabolism of hydroxylated and fluorinated benzoates by Syntrophus aciditrophicus and detection of a fluorodiene metabolite. Appl Environ Microbiol 75(4):998–1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller B, Manzoor S, Niazi A, Bongcam-Rudloff E, Schnürer A (2015) Genome-guided analysis of physiological capacities of Tepidanaerobacter acetatoxydans provides insights into environmental adaptations and syntrophic acetate oxidation. PLoS One 10:e0121237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller N, Griffin BM, Stingl U, Schink B (2008) Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Environ Microbiol 10:1501–1511

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Schleheck D, Schink B (2009) Involvement of NADH:acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J Bacteriol 191:6167–6177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499

    Article  PubMed  CAS  Google Scholar 

  • Musat N, Foster R, Vagner T, Adam B, Kuypers MMM (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511

    Article  CAS  PubMed  Google Scholar 

  • Narihiro T, Nobu MK, Tamaki H, Kamagata Y, Sekiguchi Y, Liu W-T (2016) Comparative genomics of syntrophic branched-chain fatty acid degrading bacteria. Microbes Environ 31:288–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng F, Kittelmann S, Patchett ML, Attwood GT, Janssen PH, Rakonjac J, Gagic D (2016) An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ Microbiol 18(9):3010–3021

    Article  CAS  PubMed  Google Scholar 

  • Nobu MK, Narihiro T, Tamaki H, Qiu Y-L, Sekiguchi Y, Woyke T, Goodwin L, Davenport KW, Kamagata Y, Liu W-T (2014) The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Environ Microbiol 17:4861–4872

    Article  PubMed  CAS  Google Scholar 

  • Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu W-T (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J 9:1710–1722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oehler D, Poehlein A, Leimbach A, Muller N, Daniel R, Gottschalk G, Schink B (2012) Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 13:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21:411–490

    Article  CAS  Google Scholar 

  • Peters F, Shinoda Y, McInerney MJ, Boll M (2007) Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 189:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Plugge CM, Balk M, Stams AJM (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399

    Article  CAS  PubMed  Google Scholar 

  • Plugge CM, Henstra AM, Worm P, Paulitsch AH, Scholten JCM, Lykidis A, Lapidus AL, Goltsman E, Kim E, McDonald E, Rohlin L, Crable BR, Gunsalus RP, Stams AJM, McInerney MJ (2012) Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT). Stand Genomic Sci 7:91–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Z, Pei G, Chen L, Zhang W (2014) Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri. Sci Rep 4:7478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nishina Y, Setoyama C, Miura R, Shiga K (1999) Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. J Biochem 126:668–675

    Article  CAS  PubMed  Google Scholar 

  • Schink B, Friedrich M (1994) Energetics of syntrophic fatty acid oxidation. FEMS Microbiol Rev 15:85–94

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B, Philipp B, Müller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23

    Article  CAS  PubMed  Google Scholar 

  • Schink B, Stams AJM (2013) Syntrophism among prokaryotes. In: Rosenberg E, Delong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, New York/Berlin/Heidelberg, pp 471–493

    Chapter  Google Scholar 

  • Schink B, Montag D, Keller A, Müller N (2017) Hydrogen or formate – alternative key players in methanogenic degradation. Environ Microbiol Rep. https://doi.org/10.1111/1758-2229.12524

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Müller N, Schink B, Schleheck D (2013) A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. PLoS One 8:e56905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnürer A, Svensson BH, Schink B (1997) Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiol Lett 154:331–336

    Article  Google Scholar 

  • Schöcke L, Schink B (1997) Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology 143:2345–2351

    Article  PubMed  Google Scholar 

  • Schöcke L, Schink B (1998) Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur J Biochem 256:589–594

    Article  PubMed  Google Scholar 

  • Scholten JCM, Conrad R (2000) Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol 66:2934–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schut G, Adams M (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779

    Article  CAS  PubMed  Google Scholar 

  • Shrestha PM, Rotaru A-E, Aklujkar M, Liu F, Shrestha M, Summers ZM, Malvankar N, Flores DC, Lovley DR (2013) Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep 5(6):904–910

    Article  CAS  PubMed  Google Scholar 

  • Shresta PM, Rotaru A-E (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00237

  • Sieber JR, Gunsalus RP, Rohlin L, McInerney MJ, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL (2008) Genomic insights into syntrophic fatty acid metabolism: electron transfer processes of Syntrophomonas wolfei. American Society of Microbiology 108th General Meeting. Boston, Abst. I-002, p 071

    Google Scholar 

  • Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus RP, McInerney MJ (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301

    CAS  PubMed  Google Scholar 

  • Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452

    Article  CAS  PubMed  Google Scholar 

  • Sieber JR, Le H, McInerney MJ (2014) The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ Microbiol 16:177–188

    Article  CAS  PubMed  Google Scholar 

  • Sieber JR, Crable BR, Sheik CS, Hurst GB, Rohlin L, Gunsalus RP, McInerney MJ (2015) Proteomic analysis reveals metabolic and regulatory systems involved the syntrophic and axenic lifestyle of Syntrophomonas wolfei. Front Microbiol 6:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobieraj M, Boone DR (2006) Syntrophomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, vol 4, 3rd edn. Springer, New York, pp 1041–1046

    Chapter  Google Scholar 

  • Sorokin DY, Abbas B, Tourova TP, Bumazhkin BK, Kolganova TV, Muyzer G (2014) Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes. Microbiology 160:723–732

    Article  CAS  PubMed  Google Scholar 

  • Sousa DZ, Smidt H, Alves MM, Stams AJM (2007) Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57:609–615

    Article  CAS  PubMed  Google Scholar 

  • Spahn S, Brandt K, Müller V (2015) A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life. Arch Microbiol 197:745–751

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34(3):181–186

    Article  CAS  PubMed  Google Scholar 

  • Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Szewzyk U, Schink B (1989) Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. Arch Microbiol 151:541–545

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Kuijk BLM, Stams AJM (1996) Purification and characterization of malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB. FEMS Microbiol Lett 144:141–144

    Article  PubMed  Google Scholar 

  • van Kuijk BLM, Schlösser E, Stams AJM (1998) Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB. Arch Microbiol 169:346–352

    Article  PubMed  Google Scholar 

  • Viggi CC, Rosetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol 48(13):7536–7543

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Schink B (1994) Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Arch Microbiol 162:136–142

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352

    Article  CAS  Google Scholar 

  • Warikoo V, McInerney MJ, Robinson JA, Suflita JM (1996) Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol 62:26–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Huang H, Kahnt J, Thauer RK (2013) Clostridium acidurici electron-bifurcating formate dehydrogenase. Appl Environ Microbiol 79:6176–6179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17:670–677

    Article  CAS  PubMed  Google Scholar 

  • Wessel AK, Hmelo L, Parsek MR, Whiteley M (2013) Going local: technologies for exploring bacterial microenvironments. Nat Rev Microbiol 11(5):337–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerholm M, Roos S, Schnurer A (2010) Syntrophaceticus schinkii gen. nov., sp nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309:100–104

    CAS  PubMed  Google Scholar 

  • Westerholm M, Roos S, Schnurer A (2011) Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst Appl Microbiol 34:260–266

    Article  CAS  PubMed  Google Scholar 

  • Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, Van Dorsselaer A, Boll M (2005) Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58:1238–1252

    Article  CAS  PubMed  Google Scholar 

  • Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worm P, Stams AJM, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157:280–289

    Article  CAS  PubMed  Google Scholar 

  • Worm P, Koehorst JJ, Visser M, Sedano-Núñez VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJM (2014) A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochim Biophys Acta 1837:2004–2016

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Liu X, Dong X (2006a) Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst Appl Microbiol 29:457–462

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Liu X, Dong X (2006b) Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2331–2335

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Dong X, Liu X (2007) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov. Syst Appl Microbiol 30:376–380

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Liu X, Dong X (2004) Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu X, Dong X (2005) Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803

    Article  CAS  PubMed  Google Scholar 

  • Zhilina TN, Zavarzina DG, Kolganova TV, Turova TP, Zavarzin GA (2005) “Candidatus Contubernalis alkalaceticum,” an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum. Microbiology 74:800–809

    CAS  PubMed  Google Scholar 

  • Zhou S, Xu J, Yang G, Zhuang L (2014) Methanogenesis affected by the co-occurrence of iron(III)oxides and humic substances. FEMS Microbiol Ecol 88:107–120

    Article  CAS  PubMed  Google Scholar 

  • Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J, Widdel F (1988) Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch Microbiol 150:254–266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work on syntrophic benzoate metabolism was supported by contract DE-FG02-96ER20214 from Physical Biosciences Division, Office of Science, US Department of Energy, and the work on reverse electron transfer was supported by National Science Foundation grant 1515843 to M.J.M. B. S., and N. M. are indebted to the German Research Foundation (DFG) for funding work on syntrophic butyrate oxidation and interspecies electron transfer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline M. Plugge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sieber, J.R., McInerney, M.J., Müller, N., Schink, B., Gunsalus, R.P., Plugge, C.M. (2019). Methanogens: Syntrophic Metabolism. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-78108-2_2

Download citation

Publish with us

Policies and ethics