Skip to main content

Physiology and Biochemistry of the Methane-Producing Archaea

  • Reference work entry
The Prokaryotes

The methane-producing Archaea or methanoarchaea are distinguished by their ability to obtain all or most of their energy for growth from the process of methane biosynthesis or methanogenesis. To date, no methanogens have been identified that can grow without producing methane, and these Archaea are all obligate methane producers that are uniquely specialized for this lifestyle. Methanogenesis is an anaerobic respiration, but its complexity and commitment of resources far exceeds that found in other common respiratory processes. For instance, it requires the biosynthesis of six unusual coenzymes; a long, multistep pathway for methane; and a number of unique membrane-bound enzyme complexes for coupling to the proton motive force (see below).

Given the complexity of this process, it is not surprising that methanogens appear to be monophyletic. Hence, all modern methanoarchaea possess an ancient ancestor within the Euryarchaeota (Fig. 1). Although the branching order of the deep branches...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Abbanat, D. R., and J. G. Ferry. 1991 Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA Proc. Natl. Acad. Sci. USA 88 3272–3276

    PubMed  CAS  Google Scholar 

  • Abken, H. J., M. Tietze, J. Brodersen, S. Bäumer, U. Beifuss, and U. Deppenmeier. 1998 Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1 J. Bacteriol. 180 2027–2032

    PubMed  CAS  Google Scholar 

  • Afting, C., A. Hochheimer, and R. K. Thauer. 1998 Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2 Arch. Microbiol. 169 206–210

    PubMed  CAS  Google Scholar 

  • Afting, C., E. Kremmer, C. Brucker, A. Hochheimer, and R. K. Thauer. 2000 Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis Arch. Microbiol. 174 225–232

    PubMed  CAS  Google Scholar 

  • Allen, J. R., D. D. Clark, J. G. Krum, and S. A. Ensign. 1999 A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation Proc. Natl. Acad. Sci. USA 96 8432–8437

    PubMed  CAS  Google Scholar 

  • Banerjee, R. V., N. L. Johnston, J. K. Sobeski, P. Datta, and R. G. Matthews. 1989 Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain J. Biol. Chem. 264 13888–13895

    PubMed  CAS  Google Scholar 

  • Baughn, A. D., and M. H. Malamy. 2004 The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen Nature 427 441–444

    PubMed  CAS  Google Scholar 

  • Bäumer, S., T. Ide, C. Jacobi, A. Johann, G. Gottschalk, and U. Deppenmeier. 2000 The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases J. Biol. Chem. 275 17968–17973

    PubMed  Google Scholar 

  • Bonacker, L. G., S. Baudner, and R. K. Thauer. 1992 Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera Eur. J. Biochem. 206 87–92

    PubMed  CAS  Google Scholar 

  • Bonacker, L. G., S. Baudner, E. Mörschel, R. Böcher, and R. K. Thauer. 1993 Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum Eur. J. Biochem. 217 587–595

    PubMed  CAS  Google Scholar 

  • Boone, D. R., W. B. Whitman, and P. Rouvière. 1993 Diversity and taxonomy of methanogens In: J. G. Ferry (Ed.) Methanogenesis Chapman & Hall New York NY 35–80

    Google Scholar 

  • Boone, D. R. 2001 Class I: Methanobacteria In: D. R. Boone, R. W. Castenholtz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 213

    Google Scholar 

  • Brüggemann, H., F. Falinski, and U. Deppenmeier. 2000 Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit Eur. J. Biochem. 267 5810–5814

    PubMed  Google Scholar 

  • Bult, C. J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. FitzGerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J.-F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. M. Geoghagen, J. F. Weidman, J. L. Fuhrmann, D. Nguyen, T. R. Utterback, J. M. Kelley, J. D. Peterson, P. W. Sadow, M. C. Hanna, M. D. Cotton, K. M. Roberts, M. A. Hurst, B. P. Kaine, M. Borodovsky, H.-P. Klenk, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1996 Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii Science 273 1058–1073

    PubMed  CAS  Google Scholar 

  • Buurman, G., S. Shima, and R. K. Thauer. 2000 The metal-free hydrogenase from methanogenic archaea: Evidence for a bound cofactor FEBS Lett. 485 200–204

    PubMed  CAS  Google Scholar 

  • Chistoserdova, L., J. A. Vorholt, R. K. Thauer, and M. E. Lidstrom. 1998 C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea Science 281 99–102

    PubMed  CAS  Google Scholar 

  • Choi, K. P., T. B. Bair, Y. M. Bae, and L. Daniels. 2001 Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F420 biosynthesis by Mycobacterium bovis BCG J. Bacteriol. 183 7058–7066

    PubMed  CAS  Google Scholar 

  • Cohen-Kupiec, R., C. Blank, and J. A. Leigh. 1997 Transcriptional regulation in archaea: In vivo demonstration of a repressor binding site in a methanogen Proc. Natl. Acad. USA 94 1316–1320

    CAS  Google Scholar 

  • Conrad, R. 1996 Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO) Microbiol. Rev. 60 609–640

    PubMed  CAS  Google Scholar 

  • Dai, Y. R., D. W. Reed, J. H. Millstein, P. L. Hartzell, D. A. Grahame, and E. DeMoll. 1998 Acetyl-CoA decarbonylase/synthase complex from Archaeoglobus fulgidus Arch. Microbiol. 169 525–529

    PubMed  CAS  Google Scholar 

  • Darnault, C., A. Volbeda, E. J. Kim, P. Legrand, X. Vernede, P. A. Lindahl, and J. C. Fontecilla-Camps. 2003 Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase Nature Struct. Biol. 10 271–279

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U. 1995a Different structure and expression of the operons encoding the membrane-bound hydrogenases from Methanosarcina mazei Gö1 Arch. Microbiol. 164 370–376

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U., M. Blaut, S. Lentes, C. Herzberg, and G. Gottschalk. 1995b Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b Eur. J. Biochem. 227 261–269

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U., V. Müller, and G. Gottschalk. 1996 Pathways of energy conservation in methanogenic archaea Arch. Microbiol. 165 149–163

    CAS  Google Scholar 

  • Deppenmeier, U., T. Lienard, and G. Gottschalk. 1999 Novel reactions involved in energy conservation by methanogenic archaea FEBS Lett. 457 291–297

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U. 2002a The unique biochemistry of methanogenesis Progr. Nucl Acid Res. Molec. Biol. 71 223–283

    CAS  Google Scholar 

  • Deppenmeier, U., A. Johann, T. Hartsch, R. Merkl, R. A. Schmitz, R. Martinez-Arias, A. Henne, A. Wiezer, S. Bäumer, C. Jacobi, H. Brüggemann, T. Lienard, A. Christmann, M. Bömeke, S. Steckel, A. Bhattacharyya, A. Lykidis, R. Overbeek, H.-P. Klenk, R. P. Gunsalus, H.-J. Fritz, and G. Gottschalk. 2002b The genome of Methanosarcina mazei: Evidence for lateral gene transfer between Bacteria and Archaea J. Molec. Microbiol. Biotechnol. 4 453–461

    CAS  Google Scholar 

  • Deppenmeier, U. 2004 The membrane-bound electron transport system of Methanosarcina species J. Bioenerg. Biomembr. 36 55–64

    PubMed  CAS  Google Scholar 

  • Dighe, A. S., K. Jangid, J. M. González, V. J. Pidiyar, M. S. Patole, D. R. Ranade, and Y. S. Shouche. 2004 Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol. 4(20)

    Google Scholar 

  • DiMarco, A. A., T. A. Bobik, and R. S. Wolfe. 1990 Unusual coenzymes of methanogenesis Ann. Rev. Biochem. 59 355–394

    PubMed  CAS  Google Scholar 

  • Dobbek, H., V. Svetlitchnyi, L. Gremer, R. Huber, and O. Meyer. 2001 Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster Science 293 1281–1285

    PubMed  CAS  Google Scholar 

  • Drennan, C. L., J. Heo, M. D. Sintchak, E. Schreiter, and P. W. Ludden. 2001 Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase Proc. Natl. Acad. Sci. USA 98 11973–11978

    PubMed  CAS  Google Scholar 

  • Duin, E. C., C. Bauer, B. Jaun, and R. Hedderich. 2003 Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme FEBS Lett. 538 81–84

    PubMed  CAS  Google Scholar 

  • Ensign, S. A., and J. R. Allen. 2003 Aliphatic epoxide carboxylation Ann. Rev. Biochem. 72 55–76

    PubMed  CAS  Google Scholar 

  • Ermler, U., W. Grabarse, S. Shima, M. Goubeaud, and R. K. Thauer. 1997 Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation Science 278 1457–1462

    PubMed  CAS  Google Scholar 

  • Ferguson Jr., D. J., N. Gorlatova, D. A. Grahame, and J. A. Krzycki. 2000 Reconstitution of dimethylamine:coenzyme M methyl transfer with a discrete corrinoid protein and two methyltransferases purified from Methanosarcina barkeri J. Biol. Chem. 275 29053–29060

    PubMed  CAS  Google Scholar 

  • Ferry, J. G. 1997 Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila Biofactors 6 25–35

    PubMed  CAS  Google Scholar 

  • Ferry, J. G. 1999 Enzymology of one-carbon metabolism in methanogenic pathways FEMS Microbiol. Rev. 23 13–38

    PubMed  CAS  Google Scholar 

  • Forrest, W. W., and D. J. Walker. 1971 The generation and utilization of energy during growth Adv. Microbiol. Physiol. 5 213–274

    CAS  Google Scholar 

  • Franzmann, P. D., N. Springer, W. Ludwig, E. Conway de Macario, and M. Rohde. 1992 A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov System. Appl. Microbiol. 15 573–581

    Google Scholar 

  • Franzmann, P. D., Y. Liu, D. L. Balkwill, H. C. Aldrich, E. Conway de Macario, and D. R. Boone. 1997 Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antartica Int. J. Syst. Bacteriol. 47 1068–1072

    PubMed  CAS  Google Scholar 

  • Galagan, J. E., C. Nusbaum, A. Roy, M. G. Endrizzi, P. Macdonald, W. FitzHugh, S. Calvo, R. Engels, S. Smirnov, D. Atnoor, A. Brown, N. Allen, J. Naylor, N. Stange-Thomann, K. DeArellano, R. Johnson, L. Linton, P. McEwan, K. McKernan, J. Talamas, A. Tirrell, W. Ye, A. Zimmer, R. D. Barber, I. Cann, D. E. Graham, D. A. Grahame, A. M. Guss, R. Hedderich, C. Ingram-Smith, H. C. Kuettner, J. A. Krzycki, J. A. Leigh, W. Li, J. Liu, B. Mukhopadhyay, J. N. Reeve, K. Smith, T. A. Springer, L. A. Umayam, O. White, R. H. White, E. Conway de Macario, J. G. Ferry, K. F. Jarrell, H. Jing, A. J. Macario, I. Paulsen, M. Pritchett, K. R. Sowers, R. V. Swanson, S. H. Zinder, E. Lander, W. W. Metcalf, and B. Birren. 2002 The genome of M. acetivorans reveals extensive metabolic and physiological diversity Genome Res. 12 532–542

    PubMed  CAS  Google Scholar 

  • Gärtner, P., A. Ecker, R. Fischer, D. Linder, G. Fuchs, and R. K. Thauer. 1993 Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum Eur. J. Biochem. 213 537–545

    PubMed  Google Scholar 

  • Gencic, S., and D. A. Grahame. 2003 Nickel in subunit beta of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens. Catalytic properties and evidence for a binuclear Ni-Ni site J. Biol. Chem. 278 6101–6110

    PubMed  CAS  Google Scholar 

  • Goenrich, M., F. Mahlert, E. C. Duin, C. Bauer, B. Jaun, and R. K. Thauer. 2004 Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues J. Biol. Inorg. Chem. 9 691–705

    PubMed  CAS  Google Scholar 

  • Gorris, L. G., A. C. Voet, and C. van der Drift. 1991 Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus Biofactors 3 29–35

    PubMed  CAS  Google Scholar 

  • Gorris, L. G., and C. van der Drift. 1994 Cofactor contents of methanogenic bacteria reviewed Biofactors 4 139–145

    PubMed  CAS  Google Scholar 

  • Gottschalk, G., and R. K. Thauer. 2001 The Na+-translocating methyltransferase complex from methanogenic archaea Biochim. Biophys. Acta 1505 28–36

    PubMed  CAS  Google Scholar 

  • Grahame, D. A., and E. DeMoll. 1996 Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri J. Biol. Chem. 271 8352–8358

    PubMed  CAS  Google Scholar 

  • Hagemeier, C. H., S. Shima, R. K. Thauer, G. Bourenkov, H. D. Bartunik, and U. Ermler. 2003 Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quarternary structure J. Molec. Biol. 332 1047–1057

    PubMed  CAS  Google Scholar 

  • Hallam, S. J., P. R. Girguis, C. M. Preston, P. M. Richardson, and E. F. DeLong. 2003 Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea Appl. Environ. Microbiol. 69 5483–5491

    PubMed  CAS  Google Scholar 

  • Hao, B., W. Gong, T. K. Ferguson, C. M. James, J. A. Krzycki, and M. K. Chan. 2002 A new UAG-encoded residue in the structure of a methanogen methyltransferase Science 296 1462–1466

    PubMed  CAS  Google Scholar 

  • Harms, U., and R. K. Thauer. 1997 Identification of the active site histidine in the corrinoid protein MtrA of the energy-conserving methyltransferase complex from Methanobacterium thermoautotrophicum Eur. J. Biochem. 250 783–788

    PubMed  CAS  Google Scholar 

  • Hedderich, R., O. Klimmek, A. Kröger, R. Dirmeier, M. Keller, and K. O. Stetter. 1998 Anaerobic respiration with elemental sulfur and with disulfides FEMS Microbiol. Rev. 22 353–381

    CAS  Google Scholar 

  • Hedderich, R. 2004 Energy-converting [NiFe] hydrogenases from archaea and extremophiles: Ancestors of complex I J. Bioenerg. Biomembr. 36 65–75

    PubMed  CAS  Google Scholar 

  • Hendrickson, E. L., R. Kaul, Y. Zhou, D. Bovee, P. Chapman, J. Chung, E. Conway de Macario, J. A. Dodsworth, W. Gillett, D. E. Graham, M. Hackett, A. K. Haydock, A. Kang, M. L. Land, R. Levy, T. J. Lie, T. A. Major, B. C. Moore, I. Porat, A. Palmeiri, G. Rouse, C. Saenphimmachak, D. Söll, S. van Dien, T. Wang, W. B. Whitman, Q. Xia, Y. Zhang, F. W. Larimer, M. V. Olson, and J. A. Leigh. 2004 Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis J. Bacteriol. 186 6956–6969

    PubMed  CAS  Google Scholar 

  • Hippler, B., and R. K. Thauer. 1999 The energy conserving methyltetrahydromethanopterin:coenzyme M methyltransferase complex from methanogenic archaea: function of the subunit MtrH FEBS Lett. 449 165–168

    PubMed  CAS  Google Scholar 

  • Hochheimer, A., D. Linder, R. K. Thauer, and R. Hedderich. 1996 The molybdenum formylmethanofuran dehydrogenase operon and the tungsten formylmethanofuran dehydrogenase operon from Methanobacterium thermoautotrophicum: Structures and transcriptional regulation Eur. J. Biochem. 242 156–162

    PubMed  CAS  Google Scholar 

  • Hochheimer, A., R. Hedderich, and R. K. Thauer. 1999 The DNA binding protein Tfx from Methanobacterium thermoautotrophicum: Structure, DNA binding properties and transcriptional regulation Molec. Microbiol. 31 641–650

    CAS  Google Scholar 

  • Ide, T., S. Bäumer, and U. Deppenmeier. 1999 Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: Identification of two proton-translocating segments J. Bacteriol. 181 4076–4080

    PubMed  CAS  Google Scholar 

  • Ingraham, J. L., O. Maaløe, and F. C. Neidhardt. 1983 Growth of the Bacterial Cell Sineaur Associates Sunderland MA 87–173

    Google Scholar 

  • Jablonski, P. E., A. A. DiMarco, T. A. Bobik, M. C. Cabell, and J. G. Ferry. 1990 Protein content and enzyme activities in methanol-and acetate-grown Methanosarcina thermophila J. Bacteriol. 172 1271–1275

    PubMed  CAS  Google Scholar 

  • James, C. M., T. K. Ferguson, J. F. Leykam, and J. A. Krzycki. 2001 The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon J. Biol. Chem. 276 34252–34258

    PubMed  CAS  Google Scholar 

  • Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe. 1983 Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent Arch. Microbiol. 136 254–261

    CAS  Google Scholar 

  • Kaesler, B., and P. Schönheit. 1989 The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4 Eur. J. Biochem. 186 309–316

    PubMed  CAS  Google Scholar 

  • Kessler, P. S., C. Daniel, and J. A. Leigh. 2001 Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, NifI1 and NifI2 J. Bacteriol. 183 882–889

    PubMed  CAS  Google Scholar 

  • Keswani, J., and W. B. Whitman. 2001 Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes Int. J. Syst. Evol. Microbiol. 51 667–678

    PubMed  CAS  Google Scholar 

  • Kiener, A., H. Konig, J. Winter, and T. Leisinger. 1987 Purification and use of Methanobacterium wolfei pseudomurein endopeptidase for lysis of Methanobacterium thermoautotrophicum J. Bacteriol. 169 1010–1016

    PubMed  CAS  Google Scholar 

  • Klenk, H. P., R. A. Clayton, J. F. Tomb, O. White, K. E. Nelson, K. A. Ketchum, R. J. Dodson, M. Gwinn, E. K. Hickey, J. D. Peterson, D. L. Richardson, A. R. Kerlavage, D. E. Graham, N. C. Kyrpides, R. D. Fleischmann, J. Quackenbush, N. H. Lee, G. G. Sutton, S. Gill, E. F. Kirkness, B. A. Dougherty, K. McKenney, M. D. Adams, B. Loftus, S. Peterson, C. I. Reich, L. K. McNeil, J. H. Badger, A. Glodek, L. Zhou, R. Overbeek, J. D. Gocayne, J. F. Weidmann, L. McDonald, T. Utterback, M. D. Cotton, T. Spriggs, P. Atriach, B. P. Kaine, S. M. Sykes, P. W. Sadow, K. P. D’Andrea, C. Bowman, C. Fujii, S. A. Garland, T. M. Mason, G. J. Olsen, C. M. Fraser, H. O. Smith, C. R. Woese, and J. C. Venter. 1997 The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus Nature 390 364–370

    PubMed  CAS  Google Scholar 

  • Kräutler, B. 1998 B12-coenzymes: The central theme In: B. Kräutler, D. Arigoni, and B. Golding (Eds.) Vitamin B12 and B12-proteins Wiley-VCH New York NY 4–43

    Google Scholar 

  • Kräger, M., A. Meyerdierks, F. O. Glockner, R. Amann, F. Widdel, M. Kube, R. Reinhardt, J. Kahnt, R. Böcher, R. K. Thauer, and S. Shima. 2003 A conspicuous nickel protein in microbial mats that oxidize methane anaerobically Nature 426 878–881

    Google Scholar 

  • Känkel, A., J. A. Vorholt, R. K. Thauer, and R. Hedderich. 1998 An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea Eur. J. Biochem. 252 467–476

    Google Scholar 

  • Kunow, J., D. Linder, K. O. Stetter, and R. K. Thauer. 1994 F420H2:quinone oxidoreductase from Archaeoglobus fulgidus. Characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters Eur. J. Biochem. 223 503–511

    PubMed  CAS  Google Scholar 

  • Kurr, M., R. Huber, H. König, H. W. Jannasch, H. Fricke, A. Trincone, J. K. Kristjansson, and K. O. Stetter. 1991 Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110° C Arch. Microbiol. 156 239–247

    CAS  Google Scholar 

  • Lie, T. J., and J. A. Leigh. 2002 Regulatory response of Methanococcus maripaludis to alanine, an intermediate nitrogen source J. Bacteriol. 184 5301–5306

    PubMed  CAS  Google Scholar 

  • Lie, T. J., and J. A. Leigh. 2003 Novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis Molec. Microbiol. 47 235–246

    CAS  Google Scholar 

  • Lienard, T., B. Becher, M. Marschall, S. Bowien, and G. Gottschalk. 1996 Sodium ion translocation by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes Eur. J. Biochem. 239 857–864

    PubMed  CAS  Google Scholar 

  • Lomans, B. P., R. Maas, R. Luderer, H. J. M. Op den Camp, A. Pol, C. van der Drift, and G. D. Vogels. 1999 Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol Appl. Environ. Microbiol. 65 3641–3650

    PubMed  CAS  Google Scholar 

  • Luo, H. W., H. Zhang, T. Suzuki, S. Hattori, and Y. Kamagata. 2002 Differential expression of methanogenesis genes of Methanothermobacter thermoautotrophicus (formerly Methanobacterium thermoautotrophicum) in pure culture and in cocultures with fatty acid-oxidizing syntrophs Appl. Environ. Microbiol. 68 1173–1179

    PubMed  CAS  Google Scholar 

  • Lyon, E. J., S. Shima, R. Boecher, R. K. Thauer, F. W. Grevels, E. Bill, W. Roseboom, and S. P. Albracht. 2004a Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy J. Am. Chem. Soc. 126 14239–14248

    PubMed  CAS  Google Scholar 

  • Lyon, E. J., S. Shima, G. Buurman, S. Chowdhuri, A. Batschauer, K. Steinbach, and R. K. Thauer. 2004b UV-A/blue-light inactivation of the “metal-free” hydrogenase (Hmd) from methanogenic archaea Eur. J. Biochem. 271 195–204

    PubMed  CAS  Google Scholar 

  • Madadi-Kahkesh, S., E. C. Duin, S. Heim, S. P. J. Albracht, M. K. Johnson, and R. Hedderich. 2001 A paramagnetic species with unique EPR characteristics in the active site of heterodisulfide reductase from methanogenic archaea Eur. J. Biochem. 268 2566–2577

    PubMed  CAS  Google Scholar 

  • Maden, B. E. 2000 Tetrahydrofolate and tetrahydromethanopterin compared: Functionally distinct carriers in C1 metabolism Biochem. J. 350 Pt 3 609–629

    PubMed  CAS  Google Scholar 

  • Mander, G. J., E. C. Duin, D. Linder, K. O. Stetter, and R. Hedderich. 2002 Purification and characterization of a membrane-bound enzyme complex from the sulfate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea Eur. J. Biochem. 269 1895–1904

    PubMed  CAS  Google Scholar 

  • Meuer, J., S. Bartoschek, J. Koch, A. Künkel, and R. Hedderich. 1999 Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri Eur. J. Biochem. 265 325–335

    PubMed  CAS  Google Scholar 

  • Meuer, J., H. C. Kuettner, J. K. Zhang, R. Hedderich, and W. W. Metcalf. 2002 Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation Proc. Natl. Acad. Sci. USA 99 5632–5637

    PubMed  CAS  Google Scholar 

  • Miller, T. L., and M. J. Wolin. 1982 Enumeration of Methanobrevibacter smithii in human feces Arch. Microbiol. 131 14–18

    PubMed  CAS  Google Scholar 

  • Miller, T. L. 1991 Biogenic sources of methane In: J. E. Rogers and W. B. Whitman (Eds.) Microbial Production and Consumption of Greenhouse Gases American Society for Microbiology Washington DC 175–187

    Google Scholar 

  • Miller, T. L. 2001 Genus II: Methanobrevibacter In: D. R. Boone, R. W. Castenholtz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 218–226

    Google Scholar 

  • Miller, T. L., and C. Lin. 2002 Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov Int. J. Syst. Evol. Microbiol. 52 819–922

    PubMed  CAS  Google Scholar 

  • Möller-Zinkhan, D., G. Börner, and R. K. Thauer. 1989 Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus Arch. Microbiol. 152 362–368

    Google Scholar 

  • Monson, R. K., and E. A. Holland. 2001 Biospheric trace gas fluxes and their control over tropospheric chemistry Ann. Rev. Ecol. Syst. 32 547–576

    Google Scholar 

  • Morgan, R. M., T. D. Pihl, J. Nolling, and J. N. Reeve. 1997 Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum &Δ H J. Bacteriol. 179 889–898

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, B., E. Purwantini, and L. Daniels. 1993 Effect of methanogenic substrates on coenzyme F420-dependent N5,N10-methylene-H4MPT dehydrogenase, N5,N10-methenyl-H4MPT cyclohydrolase and F420-reducing hydrogenase activities in Methanosarcina barkeri Arch. Microbiol. 159 141–146

    CAS  Google Scholar 

  • Mukhopadhyay, B., E. F. Johnson, and R. S. Wolfe. 2000 A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii Proc. Natl. Acad. Sci. USA 97 11522–11527

    PubMed  CAS  Google Scholar 

  • Mller, S., and A. Klein. 2001 Coordinate positive regulation of genes encoding [NiFe] hydrogenases in Methanococcus voltae Molec. Genet. Genom. 265 1069–1075

    Google Scholar 

  • Möller, V. 2004 An exceptional variability in the motor of archael A1A0 ATPases: From multimeric to monomeric rotors comprising 6-13 ion binding sites J. Bioenerg. Biomembr. 36 115–125

    Google Scholar 

  • Noll, I., S. Müller, and A. Klein. 1999 Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements Genetics 152 1335–1341

    PubMed  CAS  Google Scholar 

  • Pennings, J. L., J. T. Keltjens, and G. D. Vogels. 1998 Isolation and characterization of Methanobacterium thermoautotrophicum DeltaH mutants unable to grow under hydrogen-deprived conditions J. Bacteriol. 180 2676–2681

    PubMed  CAS  Google Scholar 

  • Reeburgh, W. S., S. C. Whalen, and M. J. Alperin. 1993, The role of methylotrophy in the global methane budget, In: J. C. Murrell and D. P. Kelly (Eds.) Microbial Growth on C1 Compounds, Intercept, UK, 1–14

    Google Scholar 

  • Reeburögh, W. S. 2003 Global methane biogeochemistry In: R. F. Keeling (Ed.) Treatise on Geochemistry, Volume 4: The Atmosphere Elsevier-Pergamon Oxford UK 65–89

    Google Scholar 

  • Sauer, K., and R. K. Thauer. 1997 Methanol:coenzyme M methyltransferase from Methanosarcina barkeri: Zinc dependence and thermodynamics of the methanol:cob(I)alamin methyltransferase reaction Eur. J. Biochem. 249 280–285

    PubMed  CAS  Google Scholar 

  • Saunders, N. F. W., T. Thomas, P. M. G. Curmi, J. S. Mattick, E. Kuczek, R. Slade, J. Davis, P. D. Franzmann, D. Boone, K. Rusterholtz, R. Feldman, C. Gates, S. Bench, K. Sowers, K. Kadner, A. Aerts, P. Dehal, C. Detter, T. Glavina, S. Lucas, P. Richardson, F. Larimer, L. Hauser, M. Land, and R. Cavicchioli. 2003 Mechanisms of thermal adaptation revealed from the genomes of the antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii Genome Res. 13 1580–1588

    PubMed  CAS  Google Scholar 

  • Schauer, N. L., and J. G. Ferry. 1980 Metabolism of formate in Methanobacterium formicicum J. Bacteriol. 142 800–807

    PubMed  CAS  Google Scholar 

  • Schill, N., W. M. van Gulik, D. Voisard, and U. von Stockar. 1996 Continuous cultures limited by a gaseous substrate: Development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum Biotechnol. Bioengin. 51 645–658

    CAS  Google Scholar 

  • Schlesinger, W. H. 1991 Biogeochemistry: An Analysis of Global Change, 2nd ed Academic Press New York NY

    Google Scholar 

  • Seedorf, H., A. Dreisbach, R. Hedderich, S. Shima, and R. K. Thauer. 2004 F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification Arch. Microbiol. 182 126–137

    PubMed  CAS  Google Scholar 

  • Seravalli, J., Y. Xiao, W. Gu, S. P. Cramer, W. E. Antholine, V. Krymov, G. J. Gerfen, and S. W. Ragsdale. 2004 Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not Biochemistry 43 3944–3955

    PubMed  CAS  Google Scholar 

  • Setzke, E., R. Hedderich, S. Heiden, and R. K. Thauer. 1994 H2: heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: Composition and properties Eur. J. Biochem. 220 139–148

    PubMed  CAS  Google Scholar 

  • Shima, S., E. Warkentin, R. K. Thauer, and U. Ermler. 2002 Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen J. Biosci. Bioengin. 93 519–530

    CAS  Google Scholar 

  • Shima, S., E. J. Lyon, M. Sordel-Klippert, M. Kauß, J. Kahnt, R. K. Thauer, K. Steinbach, X. Xie, L. Verdier, and C. Griesinger. 2004 The cofactor of the iron-sulfur cluster free hydrogenase Hmd: Structure of the light-inactivation product Angew. Chem. Int. Ed. Engl. 43 2547–2551

    PubMed  CAS  Google Scholar 

  • Singh-Wissmann, K., and J. G. Ferry. 1995 Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila J. Bacteriol. 177 1699–1702

    PubMed  CAS  Google Scholar 

  • Slesarev, A. I., K. V. Mezhevaya, K. S. Makarova, N. N. Polushin, O. V. Shcherbinina, V. V. Shakhova, G. I. Belova, L. Aravind, D. A. Natale, I. B. Rogozin, R. L. Tatusov, Y. I. Wolf, K. O. Stetter, A. G. Malykh, E. V. Koonin, and S. A. Kozyavkin. 2002 The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens Proc. Natl. Acad. Sci. USA 99 4644–4649

    PubMed  CAS  Google Scholar 

  • Smith, D. R., L. A. Douchette-Stamm, C. Deloughery, H. Lee, J. Dubois, T. Aldredge, R. Bashirzadeh, D. Blakely, R. Cook, K. Gilbert, D. Harrison, L. Hoang, P. Keagle, W. Lumm, B. Pothier, D. Qiu, R. Spadafora, R. Vicaire, Y. Wang, J. Wierzbowski, R. Gibson, N. Jiwani, A. Caruso, D. Bush, H. Safer, D. Patwell, S. Prabhakar, S. McDougall, G. Shimer, A. Goyal, S. Pietrokovski, G. M. Church, C. J. Daniels, J.-I. Mao, P. Rice, J. Nölling, and J. N. Reeve. 1997 Complete genome sequence of Methanobacterium thermoautotrophicum )H: Functional analysis and comparative genomics J. Bacteriol. 179 7135–7155

    PubMed  CAS  Google Scholar 

  • Sorgenfrei, O., S. Müller, M. Pfeiffer, I. Sniezko, and A. Klein. 1997 The [NiFe] hydrogenases of Methanococcus voltae: Genes, enzymes and regulation Arch. Microbiol. 167 189–195

    PubMed  CAS  Google Scholar 

  • Sowers, K. R., T. T. Thai, and R. P. Gunsalus. 1993 Transcriptional regulation of the carbon monoxide dehydrogenase gene (cdhA) in Methanosarcina thermophila J. Biol. Chem. 268 23172–23178

    PubMed  CAS  Google Scholar 

  • Sprenger, W. W., M. C. van Belzen, J. Rosenberg, J. H. P. Hackstein, and J. T. Keltjens. 2000 Methanomicrococcus blatticola gen. nov., sp. nov., a methanol-and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana Int. J. System. Evol. Microbiol. 50 1989–1999

    CAS  Google Scholar 

  • Srinivasan, G., C. M. James, and J. A. Krzycki. 2002 Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA Science 296 1459–1462

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., and B. M. Goebel. 1994 Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology Int. J. Syst. Bacteriol. 44 846–849

    CAS  Google Scholar 

  • Stettler, R., C. Thurner, D. Stax, L. Meile, and T. Leisinger. 1995 Evidence for a defective prophage on the chromosome of Methanobacterium wolfei FEMS Microbiol. Lett. 132 85–89

    PubMed  CAS  Google Scholar 

  • Stojanowic, A., G. J. Mander, E. C. Duin, and R. Hedderich. 2003 Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis Arch. Microbiol. 180 194–203

    PubMed  CAS  Google Scholar 

  • Stojanowic, A., and R. Hedderich. 2004 CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor FEMS Microbiol. Lett. 235 163–167

    PubMed  CAS  Google Scholar 

  • Sun, J., and A. Klein. 2004 A lysR-type regulator is involved in the negative regulation of genes encoding selenium-free hydrogenases in the archaeon Methanococcus voltae Molec. Microbiol. 52 563–571

    CAS  Google Scholar 

  • Svetlitchnyi, V., H. Dobbek, W. Meyer-Klaucke, T. Meins, B. Thiele, P. Romer, R. Huber, and O. Meyer. 2004 A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans Proc. Natl. Acad. Sci. USA 101 446–451

    PubMed  CAS  Google Scholar 

  • Tallant, T. C., L. Paul, and J. A. Krzycki. 2001 The MtsA subunit of the methylthiol:coenzyme M methyltransferase of Methanosarcina barkeri catalyses both half-reactions of corrinoid-dependent dimethylsulfide: coenzyme M methyl transfer J. Biol. Chem. 276 4485–4493

    PubMed  CAS  Google Scholar 

  • Tersteegen, A., and R. Hedderich. 1999 Methanobacterium thermoautotrophicum encodes two multi-subunit membrane-bound [NiFe] hydrogenases: Transcription of the operons and sequence analysis of the deduced proteins Eur. J. Biochem. 264 930–943

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., A. R. Klein, and G. C. Hartmann. 1996 Reactions with molecular hydrogen in microorganisms: Evidence for a purely organic hydrogenation catalyst Chem. Rev. 96 3031–3042

    PubMed  CAS  Google Scholar 

  • Thauer, R. K. 1998 Biochemistry of methanogenesis: A tribute to Marjory Stephenson Microbiology 144 2377–2406

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., and K. Sauer. 1999 The role of corrinoids in methanogenesis In: R. Banerjee (Ed.) Chemistry and Biochemistry of B12 John Wiley New York NY 655–679

    Google Scholar 

  • Tsao, J.-H., S. M. Kaneshiro, S.-S. Yu, and D. S. Clark. 1994 Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen Biotechnol. Bioengin. 43 258–261

    CAS  Google Scholar 

  • Tyler, S. C. 1991 The global methane budget In: J. E. Rogers and W. B. Whitman (Eds.) Microbial Production and Consumption of Greenhouse Gases American Society for Microbiology Washington DC 7–38

    Google Scholar 

  • Valentine, D. L., and W. S. Reeburgh. 2000 New perspectives on anaerobic methane oxidation Environ. Microbiol. 2 477–484

    PubMed  CAS  Google Scholar 

  • Vermeij, P., F. J. Detmers, F. J. Broers, J. T. Keltjens, and C. van der Drift. 1994 Purification and characterization of coenzyme F390 synthetase from Methanobacterium thermoautotrophicum (strain delta H) Eur. J. Biochem. 226 185–191

    PubMed  CAS  Google Scholar 

  • Vermeij, P., E. Vinke, J. T. Keltjens, and C. van der Drift. 1995 Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum (strain Marburg) Eur. J. Biochem. 234 592–597

    PubMed  CAS  Google Scholar 

  • Vermeij, P., J. L. Pennings, S. M. Maassen, J. T. Keltjens, and G. D. Vogels. 1997 Cellular levels of Factor 390 and methanogenic enzymes during growth of Methanobacterium thermoautotrophicum DeltaH J. Bacteriol. 179 6640–6648

    PubMed  CAS  Google Scholar 

  • Vignais, P. M., B. Billoud, and J. Meyer. 2001 Classification and phylogeny of hydrogenases FEMS Microbiol. Rev. 25 455–501

    PubMed  CAS  Google Scholar 

  • Vogels, G. D., J. T. Keltjens, and C. van der Drift. 1988 Biochemistry of methane production In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley New York NY 707–770

    Google Scholar 

  • Vorholt, J. A., M. Vaupel, and R. K. Thauer. 1997 A selenium-dependent and selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri Molec. Microbiol. 23 1033–1042

    CAS  Google Scholar 

  • Vorholt, J. A., and R. K. Thauer. 2002 Molybdenum and tungsten enzymes in C1 metabolism Met. Ions Biol. Syst. 39 571–619

    PubMed  CAS  Google Scholar 

  • Warkentin, E., B. Mamat, M. Sordel-Klippert, M. Wicke, R. K. Thauer, M. Iwata, S. Iwata, U. Ermler, and S. Shima. 2001 Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound EMBO J. 20 6561–6569

    PubMed  CAS  Google Scholar 

  • Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987 Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics Int. J. Syst. Bacteriol. 37 463–464

    Google Scholar 

  • Weiss, D. S., P. Gartner, and R. K. Thauer. 1994 The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor Eur. J. Biochem. 226 799–809

    PubMed  CAS  Google Scholar 

  • Whitman, W. B., D. R. Boone, Y. Koga, and J. Keswani. 2001 Taxonomy of methanogenic archaea In: D. R. Boone, R. W. Castenholtz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 211–213

    Google Scholar 

  • Widdel, F., and R. Wolfe. 1989 Expression of secondary alcohol dehydrogenases in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI Arch. Microbiol. 152 322–328

    CAS  Google Scholar 

  • Wolfe, R. S. 1991 My kind of biology Ann. Rev. Biochem. 45 1–35

    CAS  Google Scholar 

  • Wood, G. E., A. K. Haydock, and J. A. Leigh. 2003 Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis J. Bacteriol. 185 2548–2554

    PubMed  CAS  Google Scholar 

  • Wright, A.-D. G., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers, and K. D. Smith. 2004 Molecular diversity of rumen methanogens from sheep in Western Australia Appl. Environ. Microbiol. 70 1263–1270

    PubMed  CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1987 Methanohalobium evestigatus, gen. nov. sp. nov., the extremely halophilic methanogenic archaebacterium Dokl. Akad. Nauk. SSSR 293 464–468

    CAS  Google Scholar 

  • Zinder, S. H. 1993 Physiological ecology of methanogens In: J. G. Ferry (Ed.) Methanogenesis Chapman & Hall New York NY 128–206

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Hedderich, R., Whitman, W.B. (2006). Physiology and Biochemistry of the Methane-Producing Archaea. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_34

Download citation

Publish with us

Policies and ethics