Skip to main content

Silicon Nanowires for DNA Sensing

  • Chapter
  • First Online:
Computational Photonic Sensors

Abstract

Highly sensitive hybrid plasmonic slot waveguide (HPSW) biosensors based on silicon on insulator (SOI) are proposed and analyzed for DNA hybridization detection. The reported designs are based on increasing the light interaction with the sensing region by using slot waveguide with plasmonic material. Due to the high index contrast and plasmonic effect, an ultrahigh optical confinement is achieved in the low-index regions which enables the detection of the smallest change in the analyte refractive index with high sensitivity. The normalized power confinement, power density, effective index of the supported modes by the HPSWs are analyzed to achieve high power confinement through the suggested biosensors, and hence, high sensitivity can be obtained. The HPSWs are also incorporated with straight slotted resonator to calculate the sensitivity of the proposed design. In this study, two different plasmonic materials (gold and titanium nitride) are used for the proposed designs. The simulation results are calculated using full vectorial finite element method (FVFEM). The reported biosensors have high sensitivity of 1890.4 nm/RIU (refractive index unit) with a detection limit of 2.65 × 10−6 RIU with gold material and 1190 nm/RIU with a detection limit of 4.2 × 10−6 RIU based on titanium nitride material, which are the highest in the literature to the best of our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.F.O. Hameed, A.S. Saadeldin, E.M.A. Elkaramany, S.S.A. Obayya, Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 1–1 (2017)

    Google Scholar 

  2. W. Cox, V. Singer, Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling. Biotechniques 36, 114–122 (2004)

    Google Scholar 

  3. T. Dar, J. Homola, B. Rahman, M. Rajarajan, Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51, 8195–8202 (2012)

    Google Scholar 

  4. F. Dell’Olio’Olio, V. Passaro, Optical sensing by optimized silicon slot waveguides. Opt. Express 15, 4977–4993 (2007)

    Google Scholar 

  5. S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Computational Liquid Crystal Photonics (Wiley, 2016)

    Google Scholar 

  6. S.I. Azzam, M.F.O. Hameed, N.F.F. Areed, M.M. Abd-Elrazzak, H. El-Mikaty, S.S.A. Obayya, Proposal of an ultracompact CMOS-compatible TE-/TM-Pass polarizer based on SoI platform. 26(16), 1633–1636 (2014)

    Google Scholar 

  7. B. Luff, R. Harris, J. Wilkinson, R. Wilson, D. Schiffrin, Integrated optical directional coupler biosensor.Opt. Lett. 21, 618–620 (1996)

    Google Scholar 

  8. S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quantum Electron. 48(2), 142 (2016)

    Google Scholar 

  9. M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE Photonics Technol. Lett. 28(1), 59–62 (2016)

    Google Scholar 

  10. M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photonics 8(3). 1–12 (2016)

    Google Scholar 

  11. L. Rindorf, J. Jenson, M. Dufva, L. Pedersen, P. Hiby, O. Bang, Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 14, 8224–8231 (2006)

    Google Scholar 

  12. W. Hopman, P. Pottier, D. Yudistira, J. Lith, P. Lambeck, R. De La Rue, A. Driessen, H. Hoekstra, R. de Ridder, Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors. IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005)

    Google Scholar 

  13. K. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15, 7610–7615 (2007)

    Google Scholar 

  14. C. Barrios, M. Banuls, V. Gonzalez-Pedro, K. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlstrom, M. Holgado, R. Casquel, Label-free optical biosensing with slotwaveguides. Opt. Lett. 33, 708–710 (2008)

    Google Scholar 

  15. T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, P. Bienstman, Label-free biosensing with a slot waveguide based ring resonator in silicon on insulator. IEEE Photonics J. 1, 197–204 (2009)

    Google Scholar 

  16. V. Passaro, F. Dell’Olio, C. Ciminelli, M. Armenise, Efficient chemical sensing by coupled slot SOI waveguides. Sens. Actuators B Chem. 150, 417–424 (2010)

    Google Scholar 

  17. X. Sun, D. Dai, L. Thyl´en, L. Wosinski, High-sensitivity liquid refractive-index sensor based on a mach-zehnder interferometer with a double-slot hybrid plasmonic waveguide. Opt. Express 23(20), 25688–25699 (2015)

    Google Scholar 

  18. Y. Ishizaka, S. Makino, T. Fujisawa, K. Saitoh, A metal-assisted silicon slot waveguide for highly sensitive gas detection. IEEE Photonics J. 9 (2017)

    Google Scholar 

  19. L. Zhou, X. Sun, X. Li, J. Chen, Miniature microring resonator sensor based on a hybrid plasmonic waveguide. Sensors 11(7), 6856–6867 (2011)

    Google Scholar 

  20. M. Kwon, Theoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguide. Plasmonics 5(4), 347–354 (2010)

    Google Scholar 

  21. V. Zenin, S. Choudhury, S. Saha, V. Shalaev, A. Boltasseva, S. Bozhevolnyi, Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. Opt. Express 25(11), 12295 (2017)

    Google Scholar 

  22. F. Bahrami, M. Alam, J. Aitchison, M. Mojahedi, Dual polarization measurements in the hybrid plasmonic biosensors. Plasmonics 8(2), 465–473 (2013)

    Google Scholar 

  23. J. Yun, J. Kim, K. Lee, Y. Lee, B. Lee, Numerical study on refractive index sensor based on hybrid-plasmonic mode, in Proceedings of the SPIE 10323, 25th International Conference on Optical Fiber Sensors (2017)

    Google Scholar 

  24. M. Zhang, B. Liu, G. Wu, D. Chen, Hybrid plasmonic microcavity with an air-filled gap for sensing applications. Opt. Commun. 380, 6–9 (2016)

    Google Scholar 

  25. S. Ghosh, B. Rahman, An innovative straight resonator incorporating a vertical slot as an efficient bio-chemical sensor. IEEE J. Sel. Top. Quantum Electron. 23(2) (2017)

    Google Scholar 

  26. X. Li, Z. Zhang, S. Qin, T. Wang, F. Liu, M. Qiu, Y. Su, Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators. Appl. Opt. 48, F90–F94 (2009)

    Google Scholar 

  27. I. Khodadad, N. Clarke, M. Khorasaninejad, D. Henneke, S. Saini, Optimization of multiple-slot waveguides for biochemical sensing. Appl. Opt. 53, 5169–5178 (2014)

    Google Scholar 

  28. C. Viphavakit, M. Komodromos, C. Themistos, W. Mohammed, K. Kalli, B. Rahman, Optimization of a horizontal slot WG biosensor to detect DNA hybridization. Appl. Opt. 54(15), 4881–4888 (2015)

    Google Scholar 

  29. M. Malinsky, K. Kelly, G. Schatz, R. Van Duyne, Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482 (2001)

    Google Scholar 

  30. S. Obayya, Computational Photonics (Wiley, Chichester, West Sussex, UK, 2011)

    Google Scholar 

  31. S.Obayya, N. Somasiri, B. Rahman, K. Grattan, Full vectorial finite element modeling of novel polarization rotators. Opt. and Quantum Electron. 35(4), 297–312 (2003)

    Google Scholar 

  32. https://www.comsol.com/

  33. A. Krasavin, A. Zayats, Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phy. Rev. B 78, 045425 (2008)

    Google Scholar 

  34. A. Krasavin, A. Zayats, Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl. Phy. Lett. 90, 211101 (2007)

    Google Scholar 

  35. B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, J. Krenn, Dielectric stripes on gold as surface plasmon waveguides. Appl. Phy. Lett. 88, 094104 (2006)

    Google Scholar 

  36. A. Papra, N. Gadegaard, N. Larsen, Characterization of ultrathin poly(ethylene glycol) monolayers on silicon substrates. Langmuir 17, 1457–1460 (2001)

    Google Scholar 

  37. T. Dar, Numerical characterization of label-free optical biosensors. Ph.D. Dissertation, School of Engineering and Mathematical Sciences, City University, London, United Kingdom (2015)

    Google Scholar 

  38. A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)

    Google Scholar 

  39. G. Naik, V. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25(24), 3264–3294 (2013)

    Google Scholar 

  40. M.F.O. Hameed, A.S. Saadeldin, E.M.A. Elkaramany, S.S.A. Obayya, Detection of DNA hybridization by hybrid alternative plasmonic biosensor, Proc. SPIE 10672, Nanophotonics VII, 106722H (4 May 2018); doi: 10.1117/12.2306299

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hameed, M.F.O., Samy Saadeldin, A., Elkaramany, E.M.A., Obayya, S.S.A. (2019). Silicon Nanowires for DNA Sensing. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics