Skip to main content
Log in

Vertically Aligned Silicon Nanowire Array Decorated by Ag or Au Nanoparticles as SERS Substrate for Bio-molecular Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This review article summerises preparation techniques of vertically aligned silicon nanowire (Si NW) arrays through metal-assisted chemical etching (MacEtch) process and plasmonic nanoparticles (Ag and Au) with the perspective of the fabrication of surface-enhanced Raman scattering (SERS)-active substrates which are highly efficient for bio-molecular detection. At first, basic methods and mechanisms for SERS have been introduced and size and shape effects of the nanoparticles (NPs) on plasmonic vibration have been discussed. Comparative discussions on optical and plasmonic characteristics of Ag and Au NPs have also been presented in this section. Potential techniques for the synthesis of Ag and Au NPs with different sizes and shapes have been reported in the following section. Basic processes and mechanism for the fabrication of vertically aligned Si NW arrays on Si by MacEtch of Si wafer have been discussed. Template-assisted fabrication techniques for the vertically aligned Si NW arrays with controlled diameter and number density have also been reported. Finally, multifarious ways for the fabrication of SERS-active substrates by assembling noble metal NPs onto the NW surface have been discussed and their performance for bio-molecular detection has also been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface Plasmon resonance. Sens Actuator B 12:213–220

    Article  CAS  Google Scholar 

  2. Huber A, Demartis S, Neri D (1999) The use of biosensor technology for the engineering of antibodies and enzymes. J Mol Recognit 12:198–216

    Article  CAS  PubMed  Google Scholar 

  3. Weiss MN, Srivastava R, Groger H, Lo P, Luo SF (1995) A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sens Actuator A 51:211–217

    Article  CAS  Google Scholar 

  4. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuator B. 121:158–177

    Article  CAS  Google Scholar 

  5. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  PubMed  Google Scholar 

  6. Barhoumi A, Zhang D, Tam F, Halas NJ (2008) Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 130:5523–5529

    Article  CAS  PubMed  Google Scholar 

  7. Qian K, Yang L, Li Z, Liu J (2013) A new-type dynamic SERS method for ultrasensitive detection. J Raman Spectrosc 44:21–28

    Article  CAS  Google Scholar 

  8. Zhang L (2013) Self-assembly Ag nanoparticle monolayer film as SERS substrate for pesticide detection. Appl Surf Sci 270:292–294

    Article  CAS  Google Scholar 

  9. Jung J, Choo J, Kim DJ, Lee S (2006) Quantitative determination of nicotine in a PDMS microfluidic channel using surface enhanced Raman spectroscopy. Bull Kor Chem Soc 27:277–280

    Article  CAS  Google Scholar 

  10. Marnian-Lopez MB, Poppi R (2013) Standard addition method applied to the unary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Anal Chim Acta 760:53–59

    Article  CAS  Google Scholar 

  11. Zhang XF, Zou MQ, Qi XH, Liu F, Zhu XH, Zhao BH (2010) Detection of melamine in liquid milk using surface enhanced Raman scattering spectroscopy. J Raman Spectrosc 41:1655–1660

    Article  CAS  Google Scholar 

  12. Yonjon CR, Haynes CL, Zhang X, Walsh JT Jr, Van Duyne RP (2004) A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal Chem 76:78–85

    Article  CAS  Google Scholar 

  13. Neng J, Harpster MH, Wilson WC, Johnson PA (2013) Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS active nanoparticles. Biosens Bioelectron 41:316–321

    Article  CAS  PubMed  Google Scholar 

  14. Wang TL, Chiang HK, Lu HH, Peng FY (2005) Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples. Opt Quant Electron 37:1415–1422

    Article  CAS  Google Scholar 

  15. Stiufiuc R, Iacovita C, Lucaciu CM, Stiufiuc G, Dutu A, Braescu C, Leopold N (2013) SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Res Lett 8:47–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Paciotti GF, Myer L, Weinreich D, Pavel D, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    Article  CAS  PubMed  Google Scholar 

  17. Herrera GM, Padilla AC, Hernandez-Rivera SP (2013) Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nano 3:158–172

    CAS  Google Scholar 

  18. Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R (2011) Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 19:13565–13577

    Article  CAS  PubMed  Google Scholar 

  19. Bhui DK, Bar H, Sarkar P, Sahoo GP, De SP, Misra A (2009) Synthesis and UV-VIS spectroscopic study of silver nanoparticles in aqueous SDS solution. J Mol Liq 145:33–37

    Article  CAS  Google Scholar 

  20. Desai R, Mankad V, Gupta SK, Jha PK (2012) Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci Nanotechnol Lett 4:30–34

    Article  CAS  Google Scholar 

  21. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-VIS spectra. Anal Chem 79:4215–4221

    Article  CAS  PubMed  Google Scholar 

  22. Martinez JC, Chequer NA, Gonzalez JL, Cordova T (2012) Alternative methodology for gold nanoparticles diameter characterization using PCA technique and UV-VIS spectroscopy. Nanosci Nanotechnol 2:184–189

    Article  CAS  Google Scholar 

  23. Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636

    Article  CAS  PubMed  Google Scholar 

  24. Huang J, Ma D, Chen F, Bai M, Xu K, Zhao Y (2015) Ag nanoparticles decorated cactus-like Ag dendrites/Si nanoneedles as highly efficient 3D surface-enhanced Raman scattering substrates toward sensitive sensing. Anal Chem 87:10527–10534

    Article  CAS  PubMed  Google Scholar 

  25. Tabakman SM, Chen Z, Casalongue HS, Wang H, Dai H (2011) A new approach to solution-phase gold seeding for SERS substrate. Small 7:499–505

    Article  CAS  PubMed  Google Scholar 

  26. Kosovic M, Balarin M, Ivanda M, Derec V, Marcius M, Ristic M, Gamulin O (2015) Porous silicon covered with silver nanoparticles as surface-enhanced Raman scattering (SERS) substrate for ultra-low concentration detection. Appl Spectrosc 69:1417–1424

    Article  CAS  PubMed  Google Scholar 

  27. Alexander KD, Skinner K, Zhang S, Wei H, Lopez R (2010) Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett 10:4488–4493

    Article  CAS  PubMed  Google Scholar 

  28. Qi H, Glembocki OJ, Prokes SM (2012) Plasmonic properties of vertically aligned nanowire arrays. J Nanomater 2012:1–7

    Google Scholar 

  29. Etchegoin PG, Le Ru EC (2011) Surface enhanced Raman spectroscopy: biophysical and life science applications. Ed. Schlucker S Wiley-VCH, Weinheim

  30. Kneipp K, Moskovits M, Kneipp H (2006) Surface-enhanced Raman scattering. In: Schatz, G. C.; Young, M. A.; R. P. Van Duyne, R. P (eds) Electromagnetic mechanism of SERS, Spinger-Verlag, Berlin, Vol. 103, , pp 19–46

  31. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  Google Scholar 

  32. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179

    Article  CAS  Google Scholar 

  33. Xie W, Schlucker S (2013) Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 15:5329–5344

    Article  CAS  PubMed  Google Scholar 

  34. Ren W, Fang Y, Wang E (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using grapheme oxide/Ag nanoparticle hybride. ACS Nano 5:6425–6433

    Article  CAS  PubMed  Google Scholar 

  35. Huang X, Jain PK, Et-Sayed IH, Ei-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    Article  CAS  PubMed  Google Scholar 

  36. Lea MC (1889) On allotropic forms of silver. Am J Sci 37:476–491

    Article  Google Scholar 

  37. Pillai ZS, Kamat PV (2004) What factor control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951

    Article  CAS  Google Scholar 

  38. Bastus NG, Merkoci F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26:2836–2846

    Article  CAS  Google Scholar 

  39. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  40. Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Mulfinger C (2007) Synthesis and study of silver nanoparticles. J Chem Edu 84:322–325

    Article  CAS  Google Scholar 

  41. Song KC, Lee SM, Park TS, Lee BS (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Engg 26:153–155

    Article  CAS  Google Scholar 

  42. Sun, L.; Song, Y.; Wang, L.; Guo, C.; Sun, Y.; Liu, Z.; Li, Z. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J Phys Chem C 2008, 112, 1415–1422.

  43. Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017

    Article  CAS  PubMed  Google Scholar 

  44. Song HY, Ko KK, Oh IH, Lee BT (2006) Fabrication of silver nanopartiles and their antimicrobial mechanism. Eur Cell Mater 11:58

    Google Scholar 

  45. Pal A, Pal T (1999) Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis. J Raman Spectrosc 30:199–204

    Article  CAS  Google Scholar 

  46. Jiang XC, Chen WM, Chen CY, Xiong SX, Yu AB (2011) Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res Lett 6:1–9

    Google Scholar 

  47. Das R, Nath SS, Chakdar D, Gope G, Bhattacharjee R Preparation of silver nanoparticles and their characterization. J Nanotech Online. doi:10.2240/azojono0129

  48. Huang T, Xiao-Hong NX (2010) Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 20:9867–9876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface Plasmon resonance biosensors. Anal Bioanal Chem 379:920–930

    Article  CAS  PubMed  Google Scholar 

  50. Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Digest J Nanomater Biostr 5:427–432

    Google Scholar 

  51. Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activities. Mater Lett 67:91–94

    Article  CAS  Google Scholar 

  52. Johnson I, Joy Prabhu H (2015) Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. Int Nano Lett 5:43–51

    Article  CAS  Google Scholar 

  53. Giorgis F, Descrovi E, Chiodoni A, Froner E, Scarpa M, Venturello A, Geobaldo F (2008) Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Appl Surf Sci 254:7494–7497

    Article  CAS  Google Scholar 

  54. Chen F, Jiang H, Kiefer AM, Clausen AM, Ting Y-H, Wendt AE, Ding B, Lagally MG (2011) Fabrication of ultrahigh-density nanowires by electrochemical nanolithography. Nanoscale Res Lett 6(444):1–7

    Google Scholar 

  55. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  56. Schmid G, Corain B (2003) Nanoparticlculated gold: synthesis, structures, electronics and reactivities. Eur J Inorg Chem 2003:3031–3098

    Google Scholar 

  57. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Phil Trans R Soc A 147:145–181

    Article  Google Scholar 

  58. Ostwald C-Z (1907) 1, 291

  59. Bastus NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105

    Article  CAS  PubMed  Google Scholar 

  60. Khan AK, Rashid R, Murtaza G, Zahra A (2014) Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharma Res 13:1169–1177

    Article  CAS  Google Scholar 

  61. Yang J, Tan X, Shih W-C, Cheng MM-C (2014) A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid/methotrexate. Biomed Microdevices. 16:673–679

    Article  CAS  PubMed  Google Scholar 

  62. Chen H-J, Wen D (2011) Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Res Lett 6(198):1–8

    Google Scholar 

  63. Lee J-H, Choi SUS, Jang SP, Lee SY (2012) Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath. Nanoscale Res Lett 7(420):1–7

    CAS  Google Scholar 

  64. Xu Z-C, Shen C-M, Yang T-Z, Zhang H-R, Li H-L, Li J-Q, Gao H-J (2005) From aqueous to organic: a step-by-step strategy for shape evolution of gold nanoparticles. Chem Phys Lett 415:342–345

    Article  CAS  Google Scholar 

  65. Long NN, Vu LV, Kiem CD, Doanh SC, Nguyet CT, Hang PT, Thien ND, Quynh LM (2009) Synthesis and optical properties of colloidal gold nanoparticles. J Phys Conf Series 187:1–8

    Article  CAS  Google Scholar 

  66. Ojea-Jimenez I, Romero FM, Bastus NG, Puntes V (2010) Small gold nanoparticles synthesized with sodium citrate and water: insights into the reaction mecganism. J Phys Chem C 114:1800–1804

    Article  CAS  Google Scholar 

  67. Debnath D, Kim SH, Geckeler KE (2009) The first solid-phase route to fabricate and size-tune gold nanoparticles at room temperature. J Mater Sci 19:8810–8816

    CAS  Google Scholar 

  68. Kabashin AV, Meunier M, Kingston C, Luong JHT (2003) Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J Phys Chem B 107:4527–4531

    Article  CAS  Google Scholar 

  69. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649

    Article  CAS  PubMed  Google Scholar 

  70. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  PubMed  Google Scholar 

  71. Alexandridis P (2011) Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers Chem. Eng Technol 34:15–28

    Article  CAS  Google Scholar 

  72. Hochbaum AI, Fan R, He R, Yang P (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5:457–460

    Article  CAS  PubMed  Google Scholar 

  73. Seo D, Lee J, Kim SW, Kim I, Na J, Hong M-H, Choi H-J (2015) Structural modulation of silicon nanowires by combining a high gas flow rate with metal catalysts. Nanoscale Res Lett 10(190):1–7

    Google Scholar 

  74. Hofmann S, Ducati C, Neill RJ, Piscanec S, Ferrari AC, Geng J, Dunin-Borkowski RE, Robertson J (2003) Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J Appl Phys 94:6005–6012

    Article  CAS  Google Scholar 

  75. Sujuki H, Araki H, Tosa M, Noda T (2007) Formation of silicon nanowires by CVD using gold catalysts at low temperatures. Mater Transac 48:2202–2206

    Article  CAS  Google Scholar 

  76. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  CAS  PubMed  Google Scholar 

  77. Wu S, Shao YM, Nie TX, Xu L, Jiang ZM, Yang XJ (2015) Fabrication of straight silicon nanowires and their conductive properties. Nanoscale Res Lett 10(325):1–8

    PubMed Central  PubMed  Google Scholar 

  78. Hibst N, Knittel P, Biskupek J, Kranz C, Mizaikoff B, Strehle S (2016) The mechanisms of platinum-catalyzed silicon nanowire growth. Semicond Sci Tech 31:025005

    Article  CAS  Google Scholar 

  79. Hasan M, Huq MF, Mahmood ZH (2013) A review on electronic and optical properties of silicon nanowire and its different growth techniques. Springer Plus 2(151):1–9

    Google Scholar 

  80. Zhang R-Q, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15:635–640

    Article  CAS  Google Scholar 

  81. Yao Y, Li F, Lee S-T (2005) Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts. Chem Phys Lett 406:381–385

    Article  CAS  Google Scholar 

  82. Hutagalung SD, Yaacob KA, Abdul Aziz AF (2007) Oxide-assisted growth of silicon nanowires by carbothermal evaporation. Appl Surf Sci 254:633–637

    Article  CAS  Google Scholar 

  83. Schmidt V, Wittemann JV, Senz S, Gosele U (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21:2681–2702

    Article  CAS  Google Scholar 

  84. Schmid H, Bjork MT, Knoch J, Riel H, Riess W (2008) Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si (111) using silane. J Appl Phys 103:1–7

    Google Scholar 

  85. Christiansen S, Schneider R, Scholz R, Gosele U, Stelzner T, Andra G, Wendler E, Wesch W (2006) Vapor-liquid-solid growth of silicon nanowires by chemical vapor deposition on implanted templates. J Appl Phys 100:1–5

    Article  CAS  Google Scholar 

  86. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characteristics and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  87. Nassiopoulou AG, Gianneta V, Katsogridakis C (2011) Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas:formation kinetics. Nanoscale Res Lett 6(597):1–8

    Google Scholar 

  88. Osminkina LA, Gonchar KA, Marshov VS, Bunkov KV, Petrov DV, Golovan LA, Talkenberg F, Sivakov VA, Timoshenko VY (2012) Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale Res Lett 7:1–6

    Article  Google Scholar 

  89. Liu R, Zhang F, Con C, Cui B, Sun B (2013) Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Res Lett 8:1–8

    Article  CAS  Google Scholar 

  90. Balasundaram K, Sadhu JS, Shin JC, Azeredo B, Chanda D, Manik M, Hsu K, Rogers JA, Ferreira P, Sinha S, Li X (2012) Porosity control in metal-asisted chemical etching of degenerately doped silicon nanowires. Nanotechnol 23:305304

    Article  CAS  Google Scholar 

  91. Peng K, Lu A, Zhang R, Lee S-T (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Func Mater 18:3026–3035

    Article  CAS  Google Scholar 

  92. Nassiopoulou AG, Gianneta V, Katsogridakis C (2011) Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics. Nanoscale Res Lett 6:2–8

    Google Scholar 

  93. Dawood MK, Tripathy S, Dolmanan SB, Ng TH, Tan H, Lim J (2012) Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching. J Appl Phys 112:1–8

    Article  CAS  Google Scholar 

  94. Pal A, Ghosh R, Giri PK (2015) Early stages of growth of Si nanowires by metal assisted chemical etching: a scaling study. Appl Phys Lett 107:072104

    Article  CAS  Google Scholar 

  95. Li X (2012) Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltics. Cur Opin Solid State Mater Sci 16:71–81

    Article  CAS  Google Scholar 

  96. Peng KQ, Hu JJ, Yan YJ, Wu Y, Feng H, Xu Y (2006) Fabrication of single crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Func Mater 16:387–394

    Article  CAS  Google Scholar 

  97. Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Synthesis of large area silicon nanowire arrays via self assembling nanoelectrochemistry. Adv Mater 14:1164–1167

    Article  CAS  Google Scholar 

  98. Han H, Huang Z, Lee W (2014) Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9:271–304

    Article  CAS  Google Scholar 

  99. Lee J-P, Choi S, Park S (2011) Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir 27:809–814

    Article  CAS  PubMed  Google Scholar 

  100. Asoh H, Arai F, Ono S (2009) Effect of noble metal catalyst species on the morphology of micro porous silicon formed by metal assisted chemical etching. Electrochim Acta 54:5142–5148

    Article  CAS  Google Scholar 

  101. Chattapadhyay S, Bohn PW (2006) Surfactant-induced modulation of light emission in porous silicon produced by metal-assisted electroless etching. Anal Chem 78:6058–6064

    Article  CAS  Google Scholar 

  102. Yae S, Morii Y, Fukumuro N, Matsuda H (2012) Catalytic activity of noble metals for metal-aasisted chemical etching of silicon. Nanoscale Res Lett 7:1–5

    Article  Google Scholar 

  103. Dimova Malinovaska D, Sendova Vassiliva M, Tzenov N, Kamenova M (1997) Preparation of thin porous silicon layers by stain etching. Thin Solid Films 297:9–12

    Article  Google Scholar 

  104. Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  CAS  Google Scholar 

  105. Liu Y, Ji G, Wang J, Liang X, Zuo Z, Shi Y (2012) Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration. Nanoscale Res Lett 7:1–9

    Article  Google Scholar 

  106. Wang D, Ji R, Du S, Albrecht A, Schaaf P (2013) Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells. Nanoscale Res Lett 8:1–9

    Article  CAS  Google Scholar 

  107. Wu S-L, Zhang T, Zheng R-T, Cheng G-A (2012) Facile morphological control of single-crystalline silicon nanowires. Appl Surf Sci 258:9792–9799

    Article  CAS  Google Scholar 

  108. Li S, Ma W, Zhau Y, Chen X, Xiao Y, Ma M, Zhu W, Wei F (2014) Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett 9(196):1–8

    Article  CAS  Google Scholar 

  109. Lotty O; Petkov, N.; Georgiev, Y. M.; Holmes, J. D. (2012) Porous to nonporous transition in the morphology of metal assisted etched silicon nanowires. Jap J Appl Phys, 51, 11PE03(1–5)

  110. Zhang ML, Peng K-Q, Fan X, Jie J-S, Zhang R-Q, Lee S-T, Wong N-B (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450

    Article  CAS  Google Scholar 

  111. Lee DH, Kim Y, Doerk GS, Laboriante I, Maboudian R (2011) Strategies for controlling Si nanowire formation during Au-assisted electroless etching. J Mater Chem 21:10359–10363

    Article  CAS  Google Scholar 

  112. Unagami, T. Formation mechanism of porous silicon layer by anodization in HF solution. J Electrochem Soc 1980, 127, 476–483.

  113. Kooij ES, Butter K, Kelly JJ (1999) Silicon etching in HNO 3 /  HF solution: charge balance for the oxidation reaction. Electrochem Solid St Lett 2:178

    Article  CAS  Google Scholar 

  114. Shimizu T, Yamaguchi T, Inoue F, Shingubara S (2012) AgNO3-dependent morphological change of Si nanostructures prepared by single-step metal assisted method. Jpn J Appl Phys 51(11PE02):1–4

    Google Scholar 

  115. McSweeney W, Geaney H, O’Dwyer C (2015) Metal assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res 8:1395–1442

    Article  CAS  Google Scholar 

  116. Zhang T, Zhang P, Li S, Li W, Wu Z, Jiang Y (2013) Black silicon with self-cleaning surface prepared by wetting process. Nanoscale Res Lett 8(351):1–5

    CAS  Google Scholar 

  117. Chuang CL, Lin JC, Chao KH, Lin CC, Lerondel G (2012) On wet etching of n-Si (100) coated with sparse Ag-particles in aqueous NH4F with the aid of H2O2. Int J Electrochem Sci 7:2947–2964

    CAS  Google Scholar 

  118. Harada Y, Li XL, Bohn PW, Nuzzo RG (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709–8717

    Article  CAS  PubMed  Google Scholar 

  119. Bertagna V, Plougonven C, Rouelle F, Chemla M (1996) p- and n-type silicon electrochemical properties in dilute hydrofluoric acid solution. J Electrochem Soc 143:3532–3538

    Article  CAS  Google Scholar 

  120. Bertagna V, Plougonven C, Rouelle F, Chemla M (1997) Kinetics of electrochemical corrosion of silicon wafers in dilute hydrofluoric solution. J Electroanal Chem 422:115–132

    Article  CAS  Google Scholar 

  121. Mitsugi N, Nagai K (2004) Pit formation induced by copper contamination on silicon surface immersed in dilute hydrofluoric acid solution. J Electrochem Soc 151:G302–G306

    Article  CAS  Google Scholar 

  122. Hadjersi T (2007) Oxidizing agent concentration effect on metal-assisted electroless etching mechanism in HF-oxidizing agent-H2O solutions. Appl Surf Sci 253:4156–4160

    Article  CAS  Google Scholar 

  123. Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee ST (2006) Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem Eur J 12:7942–7947

    Article  CAS  PubMed  Google Scholar 

  124. Ono S, Oide A, Asoh H (2007) Nanopatterning of silicon with use of self-organized porous alumina and colloidal crystals as mask. Electrochim Acta 52:2898–2904

    Article  CAS  Google Scholar 

  125. Asoh H, Sakamoto S, Ono S (2007) Metal patterning on silicon surface by site-selective electroless deposition through colloidal crystal templating. J Colloid Interface Sci 316:547–552

    Article  CAS  PubMed  Google Scholar 

  126. Huang Z, Geyer N, Werner P, Boor JD, Gosele U (2011) Metal-assisted chemical etching of Si: a review. Adv Mater 23:285–308

    Article  CAS  PubMed  Google Scholar 

  127. Song YY, Gao ZD, Kelly JJ, Xia XH (2005) Galvanic deposition of nanostructured Noble-metal films on silicon. Electrochem Solid State Lett 8:C148–C150

    Article  CAS  Google Scholar 

  128. Qiu T, Wu XL, Siu GG, Chu PK (2006) Intergrowth mechanism of silicon nanowires and silver dendrites. J Electron Mater 35:1879–1884

    Article  CAS  Google Scholar 

  129. Goszner K, Bischof H (1974) The decomposition of hydrogen peroxide on silver—gold alloys. J Catal 32:175–182

    Article  CAS  Google Scholar 

  130. Kooij ES, Butter K, Kelley JJ (1999) Silicon etching in HNO 3 /  HF solution: charge balance for the oxidation reaction. Electrochem Solid State Lett 2:178–180

    Article  CAS  Google Scholar 

  131. Turner DR (1960) On the mechanism of chemically etching germanium and silicon. J Electrochem Soc 107:810–816

    Article  CAS  Google Scholar 

  132. Nahm KS, Seo YH, Lee HJ (1997) Formation mechanism of stains during Si etching reaction in HF–oxidizing agent–H2O solutions. J Appl Phys 81:2418–2424

    Article  CAS  Google Scholar 

  133. Chen, Q. W.; Li, X. J.; Zhang, Y. H. Material synthesis: microstructure and light emitting in porous silicon derived from hydrothermal etching. High Pressure Res 2001, 20, 1–8.

  134. Nahidi M, Kolasinski KW (2006) Effects of stain etchant composition on the photoluminescence and morphology of porous silicon. Electrochemical/chemical deposition and etching. J Elctrochem Soc 153:C19–C26

    Article  CAS  Google Scholar 

  135. Seidel, H.; Csepregi, L.; Heuberger, A.H.;Baumgartel, A. Anisotropic etching of crystalline silicon in alkaline solutions. J Electrochem Soc 1990, 137, 3613–3626.

  136. Li Y, Duan C (2015) Bubble-regulated silicon nanowire synthesis on micro-structured surfaces by metal-assisted chemical etching. Langmuir 31:12291–12299

    Article  CAS  PubMed  Google Scholar 

  137. Qiu T, Wu XL, Mie YF, Wan GJ, Chu PK, Siu GG (2005) Si nanotubes to nanowires: synthesis, characterization and self assembly. J Crys Growth 277:143–148

    Article  CAS  Google Scholar 

  138. Peng K, Yan Y, Gao S, Zhu J (2003) Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Func Mater 13:127–132

    Article  CAS  Google Scholar 

  139. Chattopadhyay S, Bohn PW (2004) Direct-write patterning of microstructured porous silicon arrays by focused-ion-beam Pt deposition and metal-assisted electroless etching. J Appl Phys 96:6888–6894

    Article  CAS  Google Scholar 

  140. Kayes BM, Filler MA, Putnam MC, Kelzenberg MD, Lewis NS, Atwater HA (2007) Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl Phys Lett 91(103110):1–3

    Google Scholar 

  141. Huang Z, Zhang X, Reiche M, Liu L, Lee W, Shimizu T, Senz S, Gosele U (2008) Extended array of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett 8:3046–3051

    Article  CAS  PubMed  Google Scholar 

  142. Kim J, Han H, Kim YH, Choi S-H, Kim J-C, Lee W (2011) Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires. ACS Nano 5:3222–3229

    Article  CAS  PubMed  Google Scholar 

  143. Kim J, Kim YH, Choi S-H, Lee W (2011) Curved silicon nanowires with ribbon-like cross section by metal-assisted chemical etching. ACS Nano 5:5242–5248

    Article  CAS  PubMed  Google Scholar 

  144. Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire arrays with controlled diameter, length and density. Adv Mater 19:744–748

    Article  CAS  Google Scholar 

  145. Chang S-W, Chuang VP, Boles ST, Ross CA, Thompson CV (2009) Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv Func Mater 19:2495–2500

    Article  CAS  Google Scholar 

  146. Choi WK, Liew TH, Dawood MK, Smith HI, Thompson CV, Hong MH (2008) Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett 8:3799–3802

    Article  CAS  PubMed  Google Scholar 

  147. Premasiri WR, Clarke RH, Womble ME (2001) Urine analysis by laser Raman spectroscopy. Lasers Surg Med 28:330–334

    Article  CAS  PubMed  Google Scholar 

  148. Li T, Guo L, Wang Z (2008) Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions. Anal Sci 24:907–910

    Article  PubMed  Google Scholar 

  149. Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato MG, Villari V, Micali N, Maragò OM, Gucciardi PG (2016) SERS detection of biomolecules at physiological pH via aggregation of gold nanorods mediated by optical forces and plasmonic heating. Sci Rep 6(26952):1–13

    Google Scholar 

  150. Kneipp K, Yang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single-molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  151. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  152. Jiang ZY, Jiang XX, Su S, Wei XP, Lee ST, He Y (2012) Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection. Appl Phys Lett 100(203104):1–4

    Google Scholar 

  153. Liu B, Lin M, Li H (2010) Potential of SERS for rapid detection of melamine and cyanuric acid extracted from milk. Sens Instrument Food Qual 4:13–19

    Article  CAS  Google Scholar 

  154. Castillo F, Perez E, de la Rosa E (2011) Adsorption of gold nanoparticles on silicon substrate and their application in surface enhanced Raman scattering. Revista Maxicana de Fisica S57:61–65

    Google Scholar 

  155. Cerf A, Molnar G, Vieu C (2009) Novel approach for the assembly of highly efficient SERS substrate. Appl Mater Interface 1:2544–2550

    Article  CAS  Google Scholar 

  156. Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78:802–804

    Article  CAS  Google Scholar 

  157. Peters RF, Gutierrez-Rivera L, Dew SK, Stepanova M (2015) Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. J Vis Exp 97:1–17

    Google Scholar 

  158. Alvarez-Puebla R, Cui B, Bravo-Vasquez J-P, Veres T, Fenniri H (2007) Nanoimprinted SERS-active substrates with tunable surface Plasmon resonances. J Phys Chem C 111:6720–6723

    Article  CAS  Google Scholar 

  159. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub 25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116

    Article  CAS  Google Scholar 

  160. Wang Y, Wang W, Liu L, Feng L, Zeng Z, Li H, Xu W, Wu Z, Hu W et al (2013) Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res 6:159–166

    Article  CAS  Google Scholar 

  161. Li M, Zhao F, Zeng J, Qi J, Lu J, Shih WC (2014) Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. J Biomed Opt 19(111611):1–8

    CAS  Google Scholar 

  162. Bronstrup G, Jahr N, Leiterer C, Csaki A, Fritzsche W (2010) Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4:7113–7122

    Article  CAS  PubMed  Google Scholar 

  163. Yin J, Qi X, Yang L, Hao G, Li J, Zhong J (2011) A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochim Acta 56:3884–3889

    Article  CAS  Google Scholar 

  164. Wang XT, Shi WS, She GW, Mu LX, Lee ST (2010) High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides. Appl Phys Lett 96:053104

    Article  CAS  Google Scholar 

  165. Luong TQN, Cao TA, Dao TC (2013) Low-concentration organic molecules detection via surface-enhanced Raman spectroscopy effect using Ag nanoparticles-coated silicon nanowire arrays. Adv Nat Sci Nanosci Nanotechnol 4:015018

    Article  CAS  Google Scholar 

  166. He Y, Su S, Xu T, Zhong Y, Zapien JA, Li J, Fan C, Lee S-T (2011) Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6:122–130

    Article  CAS  Google Scholar 

  167. Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng X (2008) Large-area silver-coated silicon nanowire array for molecular sensing using surface-enhanced Raman spectroscopy. Adv Func Mater 18:2348–2355

    Article  CAS  Google Scholar 

  168. Peng KQ, Wu Y, Fang H, Zhong XY, Xu Y, Zhu JA (2005) Uniform, axial-orientation alignment of onedimensional single-crystal silicon nanostructure arrays. Angew Chem Int Ed 44:2737–2742

  169. Yi C, Li C-W, Fu H, Zhang M, Qi S, Wong N-B, Lee S-T, Yang M (2010) Patterned growth of vertically aligned nanowire arrays for level-free DNA detection using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 397:3143–3150

    Article  CAS  PubMed  Google Scholar 

  170. Wang H, Han X, Ou X, Lee C-S, Zhang X, Lee S-T (2013) Silicon nanowire based single-molecule SERS sensor. Nano 5:8172–8176

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of DST-INSPIRE Faculty Project, DST, New Delhi (IFA 12-ENG-17, 2012), and the active support of Director, CSIR-CGCRI and Principal, Bidhan Chandra College, Rishra, for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. N. Basu or S. K. Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborti, S., Basu, R.N. & Panda, S.K. Vertically Aligned Silicon Nanowire Array Decorated by Ag or Au Nanoparticles as SERS Substrate for Bio-molecular Detection. Plasmonics 13, 1057–1080 (2018). https://doi.org/10.1007/s11468-017-0605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0605-2

Keywords

Navigation