Skip to main content

Mitochondrial Dysfunction and Chronic Disease: Treatment with Membrane Lipid Replacement and Other Natural Supplements

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria provide most of our cellular energy needs; therefore, mitochondrial dysfunction can cause fatigue and other symptoms that are commonly found in every chronic and many acute conditions. Reductions in mitochondrial function occur when there is loss of maintenance of inner mitochondrial membrane trans-membrane potential, modifications in the electron transport chain, damage to mitochondrial DNA, altered mitochondrial transcription, and reductions in the transport of critical substrates and metabolites into mitochondria. These events can result in reduced efficiency of oxidative phosphorylation and reductions in ATP production. Several components of mitochondria require routine replacement, and this can be facilitated with dietary changes and the use of natural supplements. Clinical trials have shown the utility of using oral mitochondrial replacement supplements, such as replacement glycerolphospholipids, l-carnitine, alpha-Lipoic acid, coenzyme Q10, NADH, pyrroloquinoline quinone and other mitochondrial supplements to improve mitochondrial function. Membrane Lipid Replacement supplements with or without other mitochondrial supplements can significantly diminish fatigue and other mitochondria-associated symptoms found in aging, cancer and chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ademowo OS, Dias HKI, Burton DGA, Griffiths HR (2017) Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontology 18:1–21

    Article  CAS  Google Scholar 

  • Aeschbach R, Loliger J, Scott BC, Murcia A, Butler J, Halliwell B, Anuoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36

    Article  CAS  PubMed  Google Scholar 

  • Agadjanyan M, Vasilevko V, Ghochikyan A, Berns P, Kesslak P, Settineri, Nicolson GL (2003) Nutritional supplement (NTFactor) restores mitochondrial function and reduces moderately severe fatigue in aged subjects. J Chronic Fatigue Syndr 11(3):23–26

    Article  Google Scholar 

  • Alegre J, Rosés JM, Javierre C, Ruiz-Baqués A, Segundo MJ, de Sevilla TF (2010) Nicotinamide adenine dinucleotide (NADH) in patients with chronic fatigue syndrome. Rev Clin España 210(6):284–288

    Article  CAS  Google Scholar 

  • Anand SK, Tikoo SK (2013) Viruses and modulators of mitochondrial functions. Adv Virol 2013:738794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anand I, Chandrashekhan Y, De Giuli F, Pasini E, Mazzoletti A, Confortini R, Ferrari R (1998) Acute and chronic effects of propionyl-l-carnitine on the hemodynamics, exercise capacity and hormones in patients with congestive heart failure. Cardiovasc Drugs Ther 12:291–299

    Article  CAS  PubMed  Google Scholar 

  • Anon (2010) Acetyl-l-carnitine monograph. Altern Med Rev 15(1):76–83

    Google Scholar 

  • Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, Sasakawa C (2011) Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195:931–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aw TY, Jones DP (1989) Nutrient supply and mitochondrial function. Annu Rev Nutr 9:229–251

    Article  CAS  PubMed  Google Scholar 

  • Barber DA, Harris SR (1994) Oxygen free radicals and antioxidants: a review. Am Pharmacol 34:26–35

    Article  Google Scholar 

  • Bauerly K, Harris C, Chowanadisai W, Graham J, Havel PJ, Tchaparian E, Satre M, Karliner JS, Rucker RB (2011) Altering pyrrologuinoline quinone nutritional status modulates mitochondrial, lipid and energy metabolism in rats. PLoS One 6(7):e21779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkmayer JG (1996) Coenzyme nicotinamide adenine dinucleotide: new therapeutic approach for improving dementia of the Alzheimer type. Ann Clin Lab Sci 26:1–9

    CAS  PubMed  Google Scholar 

  • Birkmayer JG, Vrecko C, Volc D, Birkmayer W (1993) Nicotinamide adenine dinucleotide—a new therapeutic approach to Parkinson’s disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl 146:32–35

    CAS  PubMed  Google Scholar 

  • Booth NE, Myhill S, McLaren-Howard J (2012) Mitochondrial dysfunction and the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Int J Clin Exp Med 5:208–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brass EP (2000) Supplemental carnitine and exercise. Am J Clin Nutr 72:618S–623S

    Article  CAS  PubMed  Google Scholar 

  • Breeding PC, Russell NC, Nicolson GL (2012) An integrative model of chronically activated immune-hormonal pathways important in the generation of fibromyalgia. Brit J Med Practit 5(3):a524

    Google Scholar 

  • Canto C, Menzies K, Auwerx J (2015) NAD+ metabolism and the control of energy homeostasis—a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers D, Bagnall A-M, Hempel S, Forbes C (2006) Interventions for the treatment, management and rehabilitation of patients with chronic fatigue syndrome/myalgic encepthalomyelitis: an updated systematic review. J R Soc Med 99:506–520

    PubMed  PubMed Central  Google Scholar 

  • Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    Article  CAS  PubMed  Google Scholar 

  • Chitkara DK, Nurko S, Shoffner JM, Buie T, Flores A (2003) Abnormalities in gastrointestinal motility are associated with diseases of oxidative phosphorylation in children. Am J Gastroenterol 98:871–877

    Article  CAS  PubMed  Google Scholar 

  • Chowandisai W, Bauerly KA, tchaparian E, Wong A, Cortopassi GA, Rucker RB (2010) Biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285:142–152

    Article  CAS  Google Scholar 

  • Colodny L, Lynch K, Farber C, Papish R, Phillips K, Sanchez M, Cooper K, Pickus, Palmer O, Percy TB, Faroqui M, Block JB (2001) Results of a study to evaluate the use of Propax to reduce adverse effects of chemotherapy. J Am Nutraceut Assoc 3(1):17–25

    Google Scholar 

  • Colquhoun D, Senn S (2000) Is NADH effective in the treatment of chronic fatigue syndrome? Ann Allergy Asthma Immunol 84:639–640

    Article  CAS  PubMed  Google Scholar 

  • Cordero MD, de Miguel M, Carmona-Lopez I, Bonal P, Campa F, Moreno-Fernandez AM (2010) Oxidative stress and mitochondrial dysfunction in fibromyalgia. Neuro Endocrinol Lett 31(2):169–173

    CAS  PubMed  Google Scholar 

  • Demarin V, Podobnik SS, Storga-Tomic D, Kay G (2004) Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30:27–33

    CAS  PubMed  Google Scholar 

  • Di Donato S (2009) Multisystem manifestations of mitochondrial disorders. J Neurol 256:693–710

    Article  PubMed  Google Scholar 

  • Di Paola M, Cocco T, Lorusso M (2000) Ceramide interaction with the respiratory chain of heart mitochondria. Biochemist 39:6660–6668

    Article  CAS  Google Scholar 

  • DiMauro S, Rustin P (2009) A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim Biophys Acta 1792:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology 26:192–205

    Article  CAS  PubMed  Google Scholar 

  • Dizdar N, Kagedal B, Lindvall B (1994) Treatment of Parkinson’s disease with NADH. Acta Neurol Scand 90:345–347

    Article  CAS  PubMed  Google Scholar 

  • Duchen MR, Szabadkai G (2010) Roles of mitochondria in human disease. Essays Biochem 47:115–137

    Article  CAS  PubMed  Google Scholar 

  • Ellithorpe RR, Settineri R, Nicolson GL (2003) Reduction of fatigue by use of a dietary supplement containing glycophospholipids. J Am Nutraceut Assoc 6(1):23–28

    Google Scholar 

  • Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramtal T, Tritschler H, Klip A (1997) Stimulation by alpha-lipoic acid of glucose transport activity in skeletal muscle of lean and obese Zucker rats. Life Sci 61:805–812

    Article  Google Scholar 

  • Felton LM, Anthony C (2005) Role of PQQ as a mammalian enzyme cofactor? Nature 433(7025):E10. discussion E11–12

    Article  CAS  PubMed  Google Scholar 

  • Feniouk BA, Skulachev VP (2017) Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants. Curr Aging Sci 10:41–48

    Article  CAS  PubMed  Google Scholar 

  • Fernandez D, Perl A (2009) Metabolic control of T cell activation and death in SLE. Autoimmun Rev 8:184–189

    Article  CAS  PubMed  Google Scholar 

  • Filler K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, Saligan LN (2014) Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin 1:12–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsyth LM, Preuss HG, MacDowell AL, Chiazze L Jr, Birkmayer GD, Bellanti JA (1999) Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann Allergy Asthma Immunol 82:185–191

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Fukuda K, Straus S, Hickie I, Sharpe M, Drobbins J, Komaroff A (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med 121:953–959

    Article  CAS  PubMed  Google Scholar 

  • Fulle S, Mecocci P, Fano G, Vecchiet I, Racciotti D, Cherubini A, Pizzigallo E, Vecchiet L, Senin U, Beal MF (2000) Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med 29:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Gabridge MG (1987) Metabolic consequences of Mycoplasma pneumoniae infection. Isr J Med Sci 23:574–579

    CAS  PubMed  Google Scholar 

  • Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, Cotman C, Cotrell B, Montine TJ, Thomas RG, Aisen P (2012) Antioxidants for Alzheimer’s disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69:836–841

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghafourifar P, Mousavizadeh K, Parihar MS, Nazarewicz RR, Parihar A, Zenebe WJ (2008) Mitochondria in multiple sclerosis. Front Biosci 13:3116–3126

    Article  CAS  PubMed  Google Scholar 

  • Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B (2011) Lipoic acid—biological activity and therapeutic potential. Pharmacol Rep 63:849–858

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groneberg DA, Kindermann B, Althammer M, Klapper M, Vormann J, Littarru GP, Doring F (2005) Coenzyme Q10 affects expression of genes involved in cell signaling, metabolism and transport in CaCo-2 cells. Int J Biochem Cell Biol 37:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Gudz TI, Tserng KY, Hoppel CL (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272:24154–24158

    Article  CAS  PubMed  Google Scholar 

  • Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB (2013) Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem 24:2076–2084

    Article  CAS  PubMed  Google Scholar 

  • Head E, Nukala VN, Fenoglio KA, Muggenburg BA, Cotman CW, Sullivan PG (2009) Effects of age dietary and behavioral enrichment on brain mitochondria in a canine model of human aging. Exp Neurol 220:171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt IJ (2010) Zen and the art of mitochondrial DNA maintenance. Trends Genet 26:103–109

    Article  CAS  PubMed  Google Scholar 

  • Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial mechanisms. Cell Mol Life Sci 65:2493–2506

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Manton KG (2004) The role of oxidative damage in mitochondria during aging: a review. Front Biosci 9:1100–1117

    Article  CAS  PubMed  Google Scholar 

  • Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 40:445–456

    Article  PubMed  CAS  Google Scholar 

  • Isobe C, Abe T, Terayama Y (2010) Levels of reduced and oxidized coenzyme Q10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrates that mitochondrial oxidative damage contributes to the neurodegenerative process. Neurosci Lett 220:41–48

    Google Scholar 

  • Jagetia GC, Rajanikant GK, Rao SK, Shrinath Baliga M (2003) Alteration in the glutathione, glutathione peroxidase, superoxide dismutase and lipid peroxidation by ascorbic acid in the skin of mice exposed to fractionated gamma radiation. Clin Chim Acta 332:111–121

    Article  CAS  Google Scholar 

  • Joseph A-M, Joanisse DR, Baillot RG, Hood DA (2012) Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res 2012:1–16. https://doi.org/10.1155/2012/642038

    Article  CAS  Google Scholar 

  • Karbowski M, Neutzner A (2012) Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 123:157–171

    Article  CAS  PubMed  Google Scholar 

  • Kerr DS (2010) Treatment of mitochondrial electron transport chain disorders: a review of clinical trials over the past decade. Mol Genet Metab 99:246–255

    Article  CAS  PubMed  Google Scholar 

  • Kieburtz K, Huntington Study Group (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 57:397–404

    CAS  Google Scholar 

  • Killgore J, Smidt C, Duich L, Romero-Chapman N, Tinker D, Reiser K, Melko M, Hyde D, Rucker RB (1989) Nutritional importance of pyrroloquinoline quinone. Science 245:850–852

    Article  CAS  PubMed  Google Scholar 

  • Kirkland JB (2009) Niacin status, NAD distribution and ADP-ribose metabolism. Curr Pharm Des 15:3–11

    Article  CAS  PubMed  Google Scholar 

  • Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  • Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Kroenke K, Wood DR, Mangelsdorff AD, Meier NJ, Powell JB (1988) Chronic fatigue in primary care. Prevalence, patient characteristics, and outcome. JAMA 260:929–934

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa T, Sato K, Seno H, Ishii A, Suzuki O (1995) Levels of pyrroloquinoline quinone in various foods. Biochem J 307:331–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and rexox signaling. Biochem J 441:523–540

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Lee S-R, Choi SS, Yeo H-G, Chang K-T, Lee HJ (2014) Therapeutically targeting neuroinflammation and microglia after acute ishemic stroke. Biomed Res Int 2014:297241

    PubMed  PubMed Central  Google Scholar 

  • Leung MCK, Rooney JP, Ryde IR, Bernal AJ, Bess AS, Crocker TL, Ji AQ, Meyer JN (2013) Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans. BMC Pharmacol Toxicol 14:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limongelli G, Msarone D, D’Alessandro R, Elliott PM (2012) Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Futur Cardiol 8:2–18

    Article  Google Scholar 

  • Littarru GP (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO, a randomized, double-blind trial. JACC Heart Fail 2:641–649

    Article  PubMed  Google Scholar 

  • Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q10: an update. Curr Opin Clin Nutr Metab Care 26:250–254

    CAS  Google Scholar 

  • Logan AC, Wong C (2001) Chronic fatigue syndrome: oxidative stress and dietary modifications. Altern Med Rev 6:450–459

    CAS  PubMed  Google Scholar 

  • Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012:1–11. https://doi.org/10.1155/2012/703538

    Article  CAS  Google Scholar 

  • Maiese K, Morhan SD, Chong ZZ (2007) Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res 4:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaguarnera M, Cammalleri L, Gargante MP, Vacante M, Colonna V, Motta M (2007) l-Carnitine treatment reduces severity of physician and mental fatigue and increases cognitive functions in centenarians: a randomized and controlled clinical trial. Am J Clin Nutr 86:1738–1744

    Article  CAS  PubMed  Google Scholar 

  • Mancuso M, Orsucci D, Calsolaro V, Choub A, Siciliano G (2009) Coenzyme Q and neurological diseases. Pharmaceuticals (Basal) 2:134–149

    Article  CAS  Google Scholar 

  • Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano G (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11:111–121

    Article  CAS  PubMed  Google Scholar 

  • Manuel y Keenoy B, Moorkens G, Vertommen J, De Leeuw I (2001) Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci 68:2037–2049

    Article  CAS  PubMed  Google Scholar 

  • Mao P, Reddy PH (2010) Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta 1802:66–79

    Article  CAS  PubMed  Google Scholar 

  • Marazziti D, Baroni S, Piccheti M, Landi P, Silvestri S, Vatteroni E, Dell’Osso MC (2012) Psychiatric disorders and mitochondrial dysfunctions. Eur Rev Med Pharmacol Sci 16:270–275

    CAS  PubMed  Google Scholar 

  • Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Pinton P (2017) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. https://doi.org/10.1016/j.ceca.2017.05.003

  • Marcovina SM, Sirtori C, Peracino A, Gheorghiade M, Borum P, Remuzzi G, Ardehali H (2012) Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of l-carnitine. Translat Res 2012. https://doi.org/10.1016/j.trsl2012.10.006. pii: S1931-5244(12)00367-2

  • Marczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, Carlson DA, Munch G (2008) Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv Drug Deliv Rev 60:1463–1470

    Article  CAS  Google Scholar 

  • Mayer JN, Leung MCK, Rooney JP, Sendoel A et al (2013) Mitochondria as the target of environmental toxicants. Toxicol Sci 134:1–17

    Article  CAS  Google Scholar 

  • Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, Sugino T, Shirai T, Kajimoto Y, Kuratsune H, Kajimoto O, Watanabe Y (2008) Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition 24:293–299

    Article  CAS  PubMed  Google Scholar 

  • Monette JS, Gomez LA, Moreau RF, Dunn KC, Butler JA, Finlay LA, Michels AJ, Shay KP, Smith EJ, Hagen TM (2011) (R)-alpha-Lipoic acid treatment restores ceramide balance in aging rat cardiac muscle. Pharmacol Res 63:23–29

    Article  CAS  PubMed  Google Scholar 

  • Morris G, Maes M (2014) Mitochondrial dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 29:19–36

    Article  CAS  PubMed  Google Scholar 

  • Morrison JD (1980) Fatigue as a presenting complaint in family practice. J Fam Pract 10:795–801

    CAS  PubMed  Google Scholar 

  • Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, Alehagen U, Steurer G, Littarru GP  (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO, a randomized, double-blind trial. JACC Heart Fail 2: 641–649.

    Google Scholar 

  • Myhill S, Booth NE, McLaren-Howard J (2009) Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2:1–16

    Google Scholar 

  • Newgard CB, An J, Bain JR, Meuhlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Survit RS, Millington DS, Butler MD, Svetkey LP (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls DG (2010) Mitochondrial ion circuits. Essays Biochem 47:25–35

    Article  CAS  PubMed  Google Scholar 

  • Nicolson GL (2003) Lipid replacement as an adjunct to therapy for chronic fatigue, anti-aging and restoration of mitochondrial function. J Am Nutraceut Assoc 6(3):22–28

    Google Scholar 

  • Nicolson GL (2007) Metabolic syndrome and mitochondrial function: molecular replacement and antioxidant supplements to prevent membrane oxidation and restore mitochondrial function. J Cell Biochem 100:1352–1369

    Article  CAS  PubMed  Google Scholar 

  • Nicolson GL (2010) Lipid replacement therapy: a nutraceutical approach for reducing cancer-associated fatigue and the adverse effects of cancer therapy while restoring mitochondrial function. Cancer Metastasis Rev 29:543–552

    Article  CAS  PubMed  Google Scholar 

  • Nicolson GL (2014) Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Alt Ther Health Med 20(Suppl. 1):18–25

    Google Scholar 

  • Nicolson GL (2016) Membrane lipid replacement: clinical Studies using a natural medicine approach to restoring membrane function and improving health. Intern J Clin Med 7(2):133–143

    Google Scholar 

  • Nicolson GL, Ash ME (2014) Lipid replacement therapy: a natural medicine approach to replacing damaged phospholipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta 1838:1657–1679

    Article  CAS  PubMed  Google Scholar 

  • Nicolson GL, Ash ME (2017) Membrane lipid replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. Biochim Biophys Acta. https://doi.org/10.1016/j.bbamem.2017.04.013

  • Nicolson GL, Ellithorpe RR (2006) Lipid replacement and antioxidant nutritional therapy for restoring mitochondrial function and reducing fatigue in chronic fatigue syndrome and other fatiguing illnesses. J Chronic Fatigue Syndr 13(1):57–68

    Article  Google Scholar 

  • Nicolson GL, Nicolson L (1996) Chronic fatigue illnesses and operation desert storm. J Occup Environ Med 38:14–16

    Article  CAS  PubMed  Google Scholar 

  • Nicolson GL, Settineri R (2011) Lipid replacement therapy: a functional food approach with new formulations for reducing cellular oxidative damage, cancer-associated fatigue and the adverse effects of cancer therapy. Funct Food Health Dis 1(4):135–160

    CAS  Google Scholar 

  • Nicolson GL, Berns P, Nasralla M, Haier J, Nicolson NL, Nass M (2003) Gulf War illnesses: chemical, radiological and biological exposures resulting in chronic fatiguing illnesses can be identified and treated. J Chronic Fatigue Syndr 11(1):135–154

    Article  Google Scholar 

  • Nicolson GL, Ellithorpe RR, Ayson-Mitchell C, Jacques B, Settineri R (2010) Lipid replacement therapy with a glycophospholipid-antioxidant-vitamin formulation significantly reduces fatigue within one week. J Am Nutraceut Assoc 13(1):11–15

    Google Scholar 

  • Nicolson GL, Settineri R, Ellithorpe E (2012a) Lipid replacement therapy with a glycophospholipid formulation with NADH and CoQ10 significantly reduces fatigue in intractable chronic fatiguing illnesses and chronic Lyme disease. Int J Clin Med 3(3):163–170

    Article  CAS  Google Scholar 

  • Nicolson GL, Settineri R, Ellithorpe E (2012b) Glycophospholipid formulation with NADH and CoQ10 significantly reduces intractable fatigue in Western blot-positive chronic Lyme disease patients: preliminary report. Funct Food Health Dis 2(3):35–47

    CAS  Google Scholar 

  • Nicolson GL, Rosenblatt S, Ferreira de Mattos G, Settineri R, Breeding PC, Ellithorpe RR and Ash ME (2016) Clinical uses of Membrane Lipid Replacement supplements in restoring membrane function and reducing fatigue in chronic diseases and cancer. Discoveries 4(1):e54.

    Google Scholar 

  • Norheim KB, Jonsson G, Omdal R (2011) Biological mechanisms of chronic fatigue. Rheumatology 50(6):1009–1018

    Google Scholar 

  • Orsucci D, Mancuso M, Ienco EC, LoGerfo A, Siciliano G (2011) Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr Med Chem 18:4053–4064

    Article  CAS  PubMed  Google Scholar 

  • Pall ML (2000) Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome. Med Hypotheses 54:115–125

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Peerscio AM (2010) Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim Biophys Acta 1797:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Niermann KJ, Olsen N (2000) Evidence for metabolic abnormalities in the muscles of patients with fibromyalgia. Curr Rheumatol Rep 2(2):131–140

    Article  CAS  PubMed  Google Scholar 

  • Penberthy WT (2009) Nicotinamide adenine dinucleotide biology and disease. Curr Pharm Des 15:1–2

    Article  PubMed  Google Scholar 

  • Pérez MJ, Quintanilla RA (2017) Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 426:1–7

    Article  PubMed  CAS  Google Scholar 

  • Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piecznik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  CAS  Google Scholar 

  • Polinsky AJ, Ebert M, Cain ED, Ludlow C, Bassich CJ (1980) Cholinergic treatment in Tourette syndrome. N Engl J Med 302:1310–1311

    Article  CAS  PubMed  Google Scholar 

  • Potgieter M, Pretorius E, Pepper MS (2013) Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr Rev 71:180–188

    Article  PubMed  Google Scholar 

  • Prasad KN, Cole WC, Kumar B, Prasad KC (2001) Scientific rationale for using high-dose multiple micronutrients as an adjunct to standard and experimental cancer therapies. J Am Coll Nutr 20(5 Suppl 1):450S–453S

    Article  CAS  PubMed  Google Scholar 

  • Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Prince JA, Harro J, Blennow K, Gottfries CG, Putamen OL (2000) Mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics. Neuropsychopharmacology 22:284–292

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich RA, Vilaro J (2010) Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med 16(2):123–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Rainer M, Kraxberger E, Haushofer M, Mucke HA, Jellinger KA (2000) No evidence for cognitive improvement from oral nicotiamide adenine dinucleotide (NADH) in dementia. J Neural Transm 107:1475–1481

    Article  CAS  PubMed  Google Scholar 

  • Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH (2008) Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 10(4):291–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Reddy TP (2011) Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 8:393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter SE, Evans AM (2012) Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet 51:553–572

    Article  CAS  PubMed  Google Scholar 

  • Rich PR, Marechal A (2010) The mitochondrial respiratory chain. Essays Biochem 47:1–23

    Article  CAS  PubMed  Google Scholar 

  • Richards RS, Roberts TK, McGregor NR, Dunstan RH, Butt HL (2000) Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Rep 5:35–41

    Article  CAS  PubMed  Google Scholar 

  • Richter C, Par JW, Ames B (1998) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85:6465–6467

    Article  Google Scholar 

  • Rosenfeldt F, Hilton D, Pepe S, Krum H (2003) Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. Biofactors 18:91–100

    Article  CAS  PubMed  Google Scholar 

  • Rossignol DA, Frye RE (2012) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17:290–314

    Article  CAS  PubMed  Google Scholar 

  • Rucker R, Chowanadisai W, Nakano M (2009) Potential physiological importance of pyrroloquinoline quinone. Altern Med Rev 14(3):179–183

    Google Scholar 

  • Santaella ML, Font I, Disdier OM (2004) Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome. P R Health Sci J 23(2):89–93

    PubMed  Google Scholar 

  • Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87:29–67

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JL (1996) The dual roles of nutrients as antioxidants and prooxidants: their effects on tumor cell growth. J Nutr 126:1221S–1227S

    Article  CAS  PubMed  Google Scholar 

  • Shah SH, Hauser ER, Bain JR, Muehlbauer MJ, Haynes C, Stevens RD, Wenner BR, Dowdy ZE, Granger CB, Ginsburg GS, Newgard CB, Kraus WE (2009) High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol Syst Biol 5:258. https://doi.org/10.1038/msb.2009.11

    Article  PubMed  PubMed Central  Google Scholar 

  • Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790:1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metabol 3:9–13

    Article  CAS  Google Scholar 

  • Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM (2004) Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem 11:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Sotgia F, Martinez-Outschoorn UE, Lisanti MP (2011) Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med 9:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:101–105

    Google Scholar 

  • Spiteller G (2010) Is lipid peroxidation of polyunsaturated acids the only source of free radicals that induce aging and age-related diseases? Rejuvenation Res 13:91–103

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL, Perrry CGR, Talanian JL (2008) Legal pre-event nutritional supplements to assist energy metabolism. Essays Biochem 44:27–43

    Article  CAS  PubMed  Google Scholar 

  • Stadtman E (2002) Introduction to serial reviews on oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:789

    Article  CAS  Google Scholar 

  • Steinberg FM, Gershwin ME, Rucker RB (1994) Dietary pyrroloquinoline quinone: growth and immune response in BALB/c mice. J Nutr 124:744–753

    Article  CAS  PubMed  Google Scholar 

  • Stites T, Storms D, Bauerly K, Mah J, Harris C, Fascetti A, Rogers Q, Tchaparian E, Satre M, Rucker RB (2006) Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J Nutr 136:390–396

    Article  CAS  PubMed  Google Scholar 

  • Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919

    Article  CAS  PubMed  Google Scholar 

  • Sun Y (1990) Free radicals, antioxidant enzymes and carcinogenesis. Free Radic Biol Med 8:583–599

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Adams C, Gulbins E (2004) Ion channels and membrane rafts in apoptosis. Pflugers Arch 448:304–312

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Karliner JS, Simonis U, Zheng J, Zhang J, Honbo N, Alano CC (2007) Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardia myocytes. Biochem Biophys Res Commun 363:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson KP, Levy G, Buchsbaum R, Shefner J, Krivickas LS, Katz J, Rollins Y, Barohn RJ, Jackson CE, Tiryaki E, Lomen-Hoerth C, Armon C, Tandan R, Rudnicki SA, Rezania K, Sufit R, Pestronk A, Novella SP, Heiman-Patterson T, Kasarskis EJ, Pioro EP, Montes J, Arbing R, Vecchio D, Barsdorf A, Mitsumoto H, Levin B (2009) Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol 66:235–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Twig G, Shirihi OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victor VM, Apostolova N, Herance R, Hernandez-Mijares A, Rocha M (2009) Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr Med Chem 16:4654–4667

    Article  CAS  PubMed  Google Scholar 

  • Wachter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krahenbuhl S (2002) Long term administration of l-carnitine to huans: effects on skeletal mscle carnitine content and physical performance. Clin Chim Acta 318:51–61

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    Article  CAS  PubMed  Google Scholar 

  • Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation and impairment of antioxidant enzymes in aging. Exp Biol Med 227(9):671–682

    Google Scholar 

  • Xiao M, Zhong H, Xia L, Tao Y, Yin H (2017) Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 111:316–327

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Dai G, Li G, Yang ES (2010) Coenzyme Q10 reduces beta-amyloid plaque in an APP/PSI transgenic mouse model of Alzheimer’s disease. J Mol Neurosci 41:110–113

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Yu L, Kong L, Ma R, Zhang J, Zhu Q, Zhu J, Hao D (2014) Pyrroloquinoline quinone (PQQ) inhibits lipopolysaccharide-induced inflammation in part via down-regulation of NF-κB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide tratmet mice. PLoS One 9(10):e109502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida K, Hirokawa J, Tagami S, Kawakami Y, Urata Y, Kondo T (1995) Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia 38(2):201–210

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu J, Cheng C, Yuan Y, Yu B, Shen A, Yan M (2012) The neuroprotective effect of pyrroloquinoline quinone on traumatic brain injury. J Neurotrauma 29:851–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler D, Nowak H, Kempler P, Vargha P, Low PA (2004) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med 21:114–121

    Article  CAS  PubMed  Google Scholar 

  • Ziegler D, Low PA, Litchy WJ, Boulton AJM, Vink AI, Freeman R, Samigullin R, Tritschler H, Munzel U, Maus J, Schute K, Dyck PJ (2011) Efficacy and safety of antioxidant treatment with alpha-Lipoic acid over 4 years in diabetic polyneuropathy. Diabetes Care 34:2054–2060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth L. Nicolson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicolson, G.L., Ferreira, G., Settineri, R., Ellithorpe, R.R., Breeding, P., Ash, M.E. (2018). Mitochondrial Dysfunction and Chronic Disease: Treatment with Membrane Lipid Replacement and Other Natural Supplements. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_22

Download citation

Publish with us

Policies and ethics