Skip to main content

Uncertainty Analysis in Embodied Carbon Assessments: What Are the Implications of Its Omission?

  • Chapter
  • First Online:
Embodied Carbon in Buildings

Abstract

Embodied carbon assessments of buildings are not methodologically very different from the more well-known life cycle assessments (LCAs). In particular, the two also share the frequent lack of uncertainty analysis in many assessments produced by academics as well as practitioners. An assessment that omits uncertainty analysis generally results in a single, very definite numerical output which however embeds no information on the likelihood of that value being true. Similarly, in comparative studies, the assessment produces two values, and the main outcome is merely reduced to a higher/lower comparison in order to choose the alternative allegedly less detrimental to the environment.

The chapter will provide the reader with a worked example through an overview of the whole process related to uncertainty analysis, from the rationale to the methodological challenges through to the increased usefulness of the results in comparison with single-value assessments. Addressing uncertainty and variability in LCA adds information about the significance and robustness of the results, as well as it benefits and facilitates environmentally conscious decisions by recognizing innovation opportunities that can be overlooked when not addressing uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarnezhad, A., Ong, K. C. G., & Chandra, L. R. (2014). Economic and environmental assessment of deconstruction strategies using building information modeling. Automation in Construction, 37, 131–144.

    Article  Google Scholar 

  • Andrianandraina, Ventura, A., Senga Kiessé, T., et al. (2015). Sensitivity analysis of environmental process modeling in a life cycle context: A case study of hemp crop production. Journal of Industrial Ecology. https://doi.org/10.1111/jiec.12228.

  • Atmaca, A., & Atmaca, N. (2015). Life cycle energy (LCEA) and carbon dioxide emissions (LCCO2A) assessment of two residential buildings in Gaziantep, Turkey. Energy and Buildings, 102, 417–431.

    Article  Google Scholar 

  • Bin, G., & Parker, P. (2012). Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home–the REEP house. Applied Energy, 93, 24–32.

    Article  Google Scholar 

  • Björklund, A. E. (2002). Survey of approaches to improve reliability in LCA. International Journal Life Cycle, 7, 64–72.

    Article  Google Scholar 

  • Blengini, G. A., & Di Carlo, T. (2010). The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy and Buildings, 42, 869–880. https://doi.org/10.1016/j.enbuild.2009.12.009.

    Article  Google Scholar 

  • Bojacá, C. R., & Schrevens, E. (2010). Parameter uncertainty in LCA: Stochastic sampling under correlation. International Journal of Life Cycle Assessment, 15, 238–246. https://doi.org/10.1007/s11367-010-0150-0.

    Article  Google Scholar 

  • Briggs, W. (2016). Uncertainty the soul of modeling, probability and statistics. New York: Springer International Publishing.

    MATH  Google Scholar 

  • Chevalier, J. L., & Tfino, J. F. L. E. (1996). Requirements for an LCA-based model for the evaluation of the environmental quality of building products. Building and Environment, 31, 487–491. https://doi.org/10.1016/0360-1323(96)00016-9.

    Article  Google Scholar 

  • Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2013). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-013-0670-5.

  • Cruze, N. B., Goel, P. K., & Bakshi, B. R. (2014). Allocation in life cycle inventory: Partial set of solutions to an ill-posed problem. International Journal of Life Cycle Assessment, 19, 1854–1865. https://doi.org/10.1007/s11367-014-0785-3.

    Article  Google Scholar 

  • Cucurachi, S., Borgonovo, E., & Heijungs, R. (2016). A protocol for the global sensitivity analysis of impact assessment models in life cycle assessment. Risk Analysis, 36, 357–377. https://doi.org/10.1111/risa.12443.

    Article  Google Scholar 

  • Del Borghi, A. (2013). LCA and communication: Environmental product declaration. International Journal of Life Cycle Assessment, 18, 293–295. https://doi.org/10.1007/s11367-012-0513-9.

    Article  Google Scholar 

  • Finnveden, G. (1999). Methodological aspects of life cycle assessment of integrated solid waste management systems. Resources, Conservation and Recycling, 26, 173–187. https://doi.org/10.1016/S0921-3449(99)00005-1.

    Article  Google Scholar 

  • Finnveden, G. (2000). On the limitations of life cycle assessment and environmental systems analysis tools in general. International Journal of Life Cycle Assessment, 5, 229–238.

    Article  Google Scholar 

  • Frischknecht, R., Jungbluth, N., Hans-Jörg, A., et al. (2007). Overview and methodology – ecoinvent report no.1. Swiss Centre for Life Cycle Inventories, Dübendorf.

    Google Scholar 

  • Funtowicz, S., & Ravetz, J. (1990). Uncertainty and quality in science for policy. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Gabi LCA Databases. (2017). In. http://www.gabi-software.com/databases/gabi-databases/

  • Gan, V. J., Cheng, J. C., Lo, I. M., & Chan, C. (2017). Developing a CO 2-e accounting method for quantification and analysis of embodied carbon in high-rise buildings. Journal of Cleaner Production, 141, 825–836.

    Article  Google Scholar 

  • Garcia-Segura, T., Yepes, V., & Alcala, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19, 3–12.

    Article  Google Scholar 

  • Gregory, J., Noshadravan, A., Olivetti, E., & Kirchain, R. (2016). A methodology for robust comparative life cycle assessments incorporating uncertainty. Environmental Science & Technology. acs.est.5b04969. https://doi.org/10.1021/acs.est.5b04969.

  • Groen, E. A., Heijungs, R., Bokkers, E. A. M., & de Boer, I. J. M. (2014). Methods for uncertainty propagation in life cycle assessment. Environmental Modelling and Software, 62, 316–325. https://doi.org/10.1016/j.envsoft.2014.10.006.

    Article  Google Scholar 

  • Guinée, J. B., & Heijungs, R. (2007). Calculating the influence of alternative allocation scenarios in fossil fuel chains. International Journal of Life Cycle Assessment, 12, 173–180. https://doi.org/10.1007/s11367-006-0253-9.

    Article  Google Scholar 

  • Guinée, J. B., Heijungs, R., Udo de Haes, H. A., & Huppes, G. (1993). Quantitative life cycle assessment of products: Classification, valuation and improvement analysis. Journal of Cleaner Production, 1, 81–91. https://doi.org/10.1016/0959-6526(93)90046-E.

    Article  Google Scholar 

  • Hammond, G., & Jones, C. (2011). Embodied carbon: The inventory of carbon and energy (ICE). University of Bath. Edited by BSRIA and printed by ImageData Ltd. ISBN 978 0 86022 703 8.

    Google Scholar 

  • Hanes, R. J., Cruze, N. B., Goel, P. K., & Bakshi, B. R. (2015). Allocation games: Addressing the ill-posed nature of allocation in life-cycle inventories. Environmental Science & Technology, 49, 7996–8003. https://doi.org/10.1021/acs.est.5b01192.

    Article  Google Scholar 

  • Heeren, N., Mutel, C. L., Steubing, B., et al. (2015). Environmental impact of buildings – what matters? Environmental Science & Technology, 49, 9832–9841. https://doi.org/10.1021/acs.est.5b01735.

    Article  Google Scholar 

  • Heijungs, R. (1996). Identification of key issues for further investigation in improving the reliability of life cycle assessments. Journal of Cleaner Production, 4, 159–166.

    Article  Google Scholar 

  • Heijungs, R., & Frischknecht, R. (2005). Representing statistical distributions for uncertain parameters in LCA. International Journal of Life Cycle Assessment, 10, 248–254. https://doi.org/10.1065/lca2004.09.177.

    Article  Google Scholar 

  • Heijungs, R., & Huijbregts, M.A.J. (2004). A review of approaches to treat uncertainty in LCA.

    Google Scholar 

  • Heijungs, R., & Kleijn, R. (2001). Numerical approaches towards life cycle interpretation five examples. International Journal of Life Cycle Assessment, 6, 141–148. https://doi.org/10.1007/BF02978732.

    Article  Google Scholar 

  • Heijungs, R., & Lenzen, M. (2014). Error propagation methods for LCA – A comparison. International Journal of Life Cycle Assessment, 19, 1445–1461. https://doi.org/10.1007/s11367-014-0751-0.

    Article  Google Scholar 

  • Heijungs, R., & Suh, S. (2002). The computational structure of life cycle assessment. International Journal of Life Cycle Assessment, 7, 314–314.

    Article  Google Scholar 

  • Henriksson, P. G. J., Guinée, J., Heijungs, R., et al. (2013). A protocol for horizontal averaging of unit process data – Including estimates for uncertainty. International Journal of Life Cycle Assessment, 19, 429–436.

    Article  Google Scholar 

  • Henriksson, P. J. G., Heijungs, R., Dao, H. M., et al. (2015). Product carbon footprints and their uncertainties in comparative decision contexts. PLoS One, 10, e0121221. https://doi.org/10.1371/journal.pone.0121221.

    Article  Google Scholar 

  • Hill, C., & Dibdiakova, J. (2016). The environmental impact of wood compared to other building materials. International Wood Production Journal, 7, 215–219. https://doi.org/10.1080/20426445.2016.1190166.

  • Hill, N., Walker, H., Beevor, J., & James, K. (2011). Guidelines to Defra/DECC’s GHG conversion factors for company reporting: Methodology paper for emission factors. London: Department for Environment, Food and Rural Affairs.

    Google Scholar 

  • Hoxha, E., Habert, G., Lasvaux, S., et al. (2017). Influence of construction material uncertainties on residential building LCA reliability. Journal of Cleaner Production, 144, 33–47. https://doi.org/10.1016/j.jclepro.2016.12.068.

    Article  Google Scholar 

  • Huijbregts, M. A. J. (1998a). LCA methodology application of uncertainty and variability in LCA part I : A general framework for the analysis of uncertainty and variability in life cycle assessment. International Journal of Life Cycle Assessment, 3, 273–280.

    Article  Google Scholar 

  • Huijbregts, M. A. J. (1998b). Application of uncertainty and variability in LCA part II : Dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment. International Journal of Life Cycle Assessment, 3, 343–351.

    Article  Google Scholar 

  • Huijbregts, M., Norris, G., & Bretz, R. (2001). Framework for modelling data uncertainty in life cycle inventories. Journal Life Cycle, 6, 127–132.

    Article  Google Scholar 

  • Huijbregts, M. A. J., Gilijamse, W., Ragas, A. M. J., & Reijnders, L. (2003). Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for. Environmental Science & Technology, 37, 2600–2608. https://doi.org/10.1021/es020971.

    Article  Google Scholar 

  • Hung, M. L., & Ma, H. W. (2009). Quantifying system uncertainty of life cycle assessment based on Monte Carlo simulation. International Journal of Life Cycle Assessment, 14, 19–27. https://doi.org/10.1007/s11367-008-0034-8.

    Article  Google Scholar 

  • Imbeault-Tétreault, H., Jolliet, O., Deschênes, L., & Rosenbaum, R. K. (2013). Analytical propagation of uncertainty in life cycle assessment using matrix formulation. Journal of Industrial Ecology, 17, 485–492. https://doi.org/10.1111/jiec.12001.

    Article  Google Scholar 

  • ISO. (2006). Environmental management – Life cycle assessment – Requirements and guidelines. Switzerland: International Organization for Standardization. ISO 14044:2006.

    Google Scholar 

  • JRC-IES. (2010). International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment – Detailed guidance. Luxembourg: Publications Office of the European Union. First edition.

    Google Scholar 

  • Jung, J., Assen, N., & Bardow, A. (2013). Sensitivity coefficient-based uncertainty analysis for multi-functionality in LCA. International Journal of Life Cycle Assessment, 19, 661–676. https://doi.org/10.1007/s11367-013-0655-4.

    Article  Google Scholar 

  • Kennedy, D. J., Montgomery, D. C., & Quay, B. H. (1996). Data quality stochastic environmental life cycle assessment modeling: A probabilistic approach to incorporating variable input data quality. International Journal of Life Cycle Assessment, 1, 199–207.

    Article  Google Scholar 

  • Lloyd, S. M., & Ries, R. (2007). Characterizing, propagating, and analyzing uncertainty in life-cycle assessment. Journal of Industrial Ecology, 11, 161–181. https://doi.org/10.1162/jiec.2007.1136.

    Article  Google Scholar 

  • Mendoza Beltran, A., Heijungs, R., Guinée, J., & Tukker, A. (2015). A pseudo-statistical approach to treat choice uncertainty: The example of partitioning allocation methods. International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-015-0994-4.

  • Mendoza Beltran, A., Prado-Lopez, V., Font Vivanco, D., et al. (2017). Quantified uncertainties in comparative LCAs: What can be concluded?

    Google Scholar 

  • Monahan, J., & Powell, J. C. (2011). An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings, 43, 179–188. https://doi.org/10.1016/j.enbuild.2010.09.005.

    Article  Google Scholar 

  • Muller, S., Lesage, P., Ciroth, A., et al. (2014). The application of the pedigree approach to the distributions foreseen in ecoinvent v3. International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-014-0759-5.

  • Ökobaudat. (2016). Ökobaudat, Informationsportal nachhaltiges bauen. www.oekobaudat.de. Accessed 1 Apr 2016.

  • Padey, P., Girard, R., le Boulch, D., & Blanc, I. (2013). From LCAs to simplified models: A generic methodology applied to wind power electricity. Environmental Science & Technology, 47, 1231–1238. https://doi.org/10.1021/es303435e.

    Article  Google Scholar 

  • Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment: What does the evidence say? Journal of Environmental Management, 181, 687–700. https://doi.org/10.1016/j.jenvman.2016.08.036.

    Article  Google Scholar 

  • Pomponi, F., Piroozfar, P. A. E., Southall, R., et al. (2015). Life cycle energy and carbon assessment of double skin façades for office refurbishments. Energy and Buildings, 109, 143–156. https://doi.org/10.1016/j.enbuild.2015.09.051.

    Article  Google Scholar 

  • Pomponi, F., Piroozfar, P. A. E., & Farr, E. R. P. (2016). An investigation into GHG and non-GHG impacts of double skin façades in office refurbishments. Journal of Industrial Ecology, 20, 234–248. https://doi.org/10.1111/jiec.12368.

    Article  Google Scholar 

  • Pomponi, F., D’Amico, B., & Moncaster, A. (2017). A method to facilitate uncertainty analysis in LCAs of buildings. Energies, 10, 524. https://doi.org/10.3390/en10040524.

    Article  Google Scholar 

  • Prado-Lopez, V., Seager, T. P., Chester, M., et al. (2014). Stochastic multi-attribute analysis (SMAA) as an interpretation method for comparative life-cycle assessment (LCA). International Journal of Life Cycle Assessment, 19, 405–416. https://doi.org/10.1007/s11367-013-0641-x.

    Article  Google Scholar 

  • Prado-lopez, V., Wender, B. A., Seager, T. P., et al. (2015). Tradeoff evaluation improves a photovoltaic case study. Journal of Industrial Ecology, 00, 1–9. https://doi.org/10.1111/jiec.12292.

    Google Scholar 

  • Qin, Y., & Suh, S. (2016). What distribution function do life cycle inventories follow? International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-016-1224-4.

  • Ross, S., Evans, D., & Webber, M. (2002). How LCA studies deal with uncertainty. International Journal of Life Cycle Assessment, 7, 47–52. https://doi.org/10.1007/BF02978909.

    Article  Google Scholar 

  • Swiss Centre For Life Cycle Inventories. (2007). Ecoinvent database 2.2. Ecoinvent Cent. 2.0.

    Google Scholar 

  • Tillman, A. M., Ekvall, T., Boumann, H., & Rydberg, T. (1994). Choice of system boundaries in life cycle assessment. Journal of Cleaner Production, 2, 21–29.

    Article  Google Scholar 

  • Udo de Haes, H. A. (1993). Applications of life cycle assessment: Expectations, drawbacks and perspectives. Journal of Cleaner Production, 1, 131–137. https://doi.org/10.1016/0959-6526(93)90002-S.

    Article  Google Scholar 

  • Vieira, P. S., & Horvath, A. (2008). Assessing the end-of-life impacts of buildings. Environmental Science & Technology, 42, 4663–4669. https://doi.org/10.1021/es071345l.

    Article  Google Scholar 

  • Wei, W., Larrey-Lassalle, P., Faure, T., et al. (2016). Using the reliability theory for assessing the decision confidence probability for comparative life cycle assessments. Environmental Science & Technology, 50, 2272–2280. https://doi.org/10.1021/acs.est.5b03683.

    Article  Google Scholar 

  • Weidema, B. P. (2000). Avoiding co-product allocation in life-cycle assessment. Journal of Industrial Ecology, 4, 11–33. https://doi.org/10.1162/108819800300106366.

    Article  Google Scholar 

  • Weidema, B., & Wesnæs, M. (1996). Data quality management for life cycle inventories – An example of using data quality indicators. Journal of Cleaner Production, 4, 167–174.

    Article  Google Scholar 

  • Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46, 1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002.

    Article  Google Scholar 

  • Zhang, X., & Wang, F. (2015). Life-cycle assessment and control measures for carbon emissions of typical buildings in China. Building and Environment, 86, 89–97. https://doi.org/10.1016/j.buildenv.2015.01.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mendoza Beltran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendoza Beltran, M.A., Pomponi, F., Guinée, J.B., Heijungs, R. (2018). Uncertainty Analysis in Embodied Carbon Assessments: What Are the Implications of Its Omission?. In: Pomponi, F., De Wolf, C., Moncaster, A. (eds) Embodied Carbon in Buildings. Springer, Cham. https://doi.org/10.1007/978-3-319-72796-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72796-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72795-0

  • Online ISBN: 978-3-319-72796-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics