Skip to main content

5-D Hyperchaotic and Chaotic Systems with Non-hyperbolic Equilibria and Many Equilibria

  • Chapter
  • First Online:
Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 133))

Abstract

In the present decade, chaotic systems are used and appeared in many fields like in information security, communication systems, economics, bioengineering, mathematics, etc. Thus, developing of chaotic dynamical systems is most interesting and desirable in comparison with dynamical systems with regular behaviour. The chaotic systems are categorised into two groups. These are (i) system with self-excited attractors and (ii) systems with hidden attractors. A self-excited attractor is generated depending on the location of its unstable equilibrium point and in such case, the basin of attraction touches the equilibria. But, in the case of hidden attractors, the basin of attraction does not touch the equilibria and also finding of such attractors is a difficult task. The systems with (i) no equilibrium point and (ii) stable equilibrium points belong to the category of hidden attractors. Recently chaotic systems with infinitely many equilibria/a line of equilibria are also considered under the cattegory of hidden attractors. Higher dimensional chaotic systems have more complexity and disorders compared with lower dimensional chaotic systems. Recently, more attention is given to the development of higher dimensional chaotic systems with hidden attractors. But, the development of higher dimensional chaotic systems having both hidden attractors and self-excited attractors is more demanding. This chapter reports three hyperchaotic and two chaotic, 5-D new systems having the nature of both the self-excited and hidden attractors. The systems have non-hyperbolic equilibria, hence, belong to the category of self-excited attractors. Also, the systems have many equilibria, and hence, may be considered under the category of a chaotic system with hidden attractors. A systematic procedure is used to develop the new systems from the well-known 3-D Lorenz chaotic system. All the five systems exhibit multistability with the change of initial conditions. Various theoretical and numerical tools like phase portrait, Lyapunov spectrum, bifurcation diagram, Poincaré map, and frequency spectrum are used to confirm the chaotic nature of the new systems. The MATLAB simulation results of the new systems are validated by designing their circuits and realising the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrievskii BR, Fradkov AL (2004) Control of chaos : methods and applications. II. Applications. Autom Remote Control 65(4):505–533

    Article  MathSciNet  MATH  Google Scholar 

  • Barati K, Jafari S, Sprott JC, Pham V (2016) Simple chaotic flows with a curve of equilibria. Int J Bifurcat Chaos 26(12):1630034–1630040

    Article  MathSciNet  MATH  Google Scholar 

  • Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurcat Chaos 9:1465–1999

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Yang Q (2015) A new Lorenz-type hyperchaotic system with a curve of equilibria. Math Comput Simul 112:40–55

    Article  MathSciNet  Google Scholar 

  • Chen M, Xu Q, Lin Y, Bao B (2017) Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn 87(2):789–802

    Article  Google Scholar 

  • Chudzik A, Perlikowski P, Stefański A, Kapitaniak T (2011) Multistability and rare attractors in van der Pol–Duffing oscillator. Int J Bifurcat Chaos 21(7):1907–1912

    Article  MathSciNet  MATH  Google Scholar 

  • Effati S, Saberi-Nadjafi J, Saberi Nik H (2014) Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems. Appl Math Model 38(2):759–774

    Article  MathSciNet  Google Scholar 

  • Esteban T-C, de Jesus Rangel MJ, de la Fraga LG (2016) Engineering applications of FPGAs : chaotic systems, artificial neural networks, random number generators, and secure communication systems. Springer, Switzerland

    Google Scholar 

  • Gotthans T, Petržela J (2015) New class of chaotic systems with circular equilibrium. Nonlinear Dyn 81:1143–1149

    Article  MathSciNet  Google Scholar 

  • Gotthans T, Sprott JC, Petrzela J (2016) Simple chaotic flow with circle and square equilibrium. Int J Bifurcat Chaos 26(8):1650137–1650145

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari S, Sprott JC (2013) Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57:79–84. https://doi.org/10.1016/j.chaos.2013.08.018

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari S, Sprott JC (2015) Erratum: simple chaotic flows with a line equilibrium (Chaos Solitons Fractals (2013) 57:79–84). Chaos Solitons Fractals 77:341–342 (2016a)

    Google Scholar 

  • Jafari S, Sprott JC, Molaie M (2016a) A simple chaotic flow with a plane of equilibria. Int J Bifurcat Chaos 26(6):1650098–1650104

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari S, Sprott JC, Pham V, Volos C, Li C (2016b) Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 86(2):1349–1358

    Article  Google Scholar 

  • Kemih K, Bouraoui H, Messadi M, Ghanes M (2013) Impulsive control and synchronization of a new 5D hyperchaotic system. Acta Phys Pol A 123(2):193–195

    Article  Google Scholar 

  • Kingni ST, Jafari S, Simo H, Woafo P (2014) Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur Phys J Plus 129(76):1–16

    Google Scholar 

  • Kingni ST, Jafari S, Pham V-T, Woafo P (2016a) Constructing and analysing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors. Math Comput Simul 132:172–182

    Article  Google Scholar 

  • Kingni ST, Pham V-T, Jafari S, Kol GR, Woafo P (2016b) Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circ Syst Signal Process 35(6):1807–1813

    Article  MathSciNet  MATH  Google Scholar 

  • Kiseleva M, Kondratyeva N, Kuznetsov N, Leonov G (2017) Hidden oscillations in electromechanical systems. In: Dynamics and Control of Advanced Structures and Machines. Springer, pp 119–124

    Google Scholar 

  • Lam HK, Li H (2014) Synchronization of chaotic systems using sampled-data polynomial controller. J Dyn Syst Meas Control 136(3):31006. https://doi.org/10.1115/1.4026304

    Article  Google Scholar 

  • Lao S, Tam L, Chen H, Sheu L (2014) Hybrid stability checking method for synchronization of chaotic fractional-order systems. Abstr Appl Anal 2014:1–11

    Article  MathSciNet  Google Scholar 

  • Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems: from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurcat Chaos 23(1):130071–1330002

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov GA, Kuznetsov NV, Vagaitsev VI (2011a) Localization of hidden Chuas attractors. Phys Lett A 375(23):2230–2233

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov GA, Kuznetsov NV, Kuznestova OA, Seledzhi SM, Vagaitsev VI (2011b) Hidden oscillations in dynamical systems system. Trans Syst Control 6(2):1–14

    Google Scholar 

  • Leonov GA, Kuznetsov NV, Vagaitsev VI (2012) Hidden attractor in smooth Chua systems. Phys D 241(18):1482–1486

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov GA, Kuznetsov NV, Kiseleva MA, Solovyeva EP, Zaretskiy AM (2014) Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn 77(1–2):277–288

    Article  Google Scholar 

  • Leonov GA, Kuznetsov NV, Mokaev TN (2015) Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun Nonlinear Sci Numer Simul 28(1–3):166–174

    Article  MathSciNet  Google Scholar 

  • Li CL, Xiong J Bin (2017) A simple chaotic system with non-hyperbolic equilibria. Optik 128:42–49

    Article  Google Scholar 

  • Li C, Sprott JC, Thio W (2014a) Bistability in a hyperchaotic system with a line equilibrium. J Exp Theor Phys 118(3):494–500

    Article  Google Scholar 

  • Li Q, Hu S, Tang S, Zeng G (2014b) Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int J Circuit Theory Appl 42(11):1172–1188

    Article  Google Scholar 

  • Lin Y, Wang C, He H, Zhou LL (2016) A novel four-wing non-equilibrium chaotic system and its circuit implementation. Pramana 86(4):801–807

    Article  Google Scholar 

  • Lochan K, Roy BK (2015) Control of two-link 2-DOF robot manipulator using fuzzy logic techniques: a review. Advances in Intelligent Systems and Computing Proceedings of Fourth International Conference on Soft Computing for Problem Solving, vol 336, pp 205–14

    Google Scholar 

  • Lochan K, Roy BK (2016) Trajectory tracking control of an AMM modelled TLFM using backstepping method. Int J Control Theory Appl 9(39):241–248

    Google Scholar 

  • Lochan K, Roy BK, Subudhi B (2016a) Generalized projective synchronization between controlled master and multiple slave TLFMs with modified adaptive SMC. Trans Inst Meas Control, 1–23. http://doi.org/10.1177/0142331216674067

  • Lochan K, Roy BK, Subudhi B (2016b) SMC controlled chaotic trajectory tracking of two-link flexible manipulator with PID sliding. IFAC-PapersOnLine 49(1):219–224

    Article  Google Scholar 

  • Lochan K, Roy BK, Subudhi B (2016c) A review on two-link flexible manipulators. Annu Rev Control 42:346–367

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  • Lü J, Chen G, Cheng D, Celikovsky S (2002) Bridge the gap between the Lorenz system and the Chen system. Int J Bifurcat Chaos 12(12):2917–2926

    Article  MathSciNet  MATH  Google Scholar 

  • Ma J, Chen Z, Wang Z, Zhang Q (2015) A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn 81(3):1275–1288

    Article  MATH  Google Scholar 

  • Munmuangsaen B, Srisuchinwong B, Sprott JC (2011) Generalization of the simplest autonomous chaotic system. Phys Lett A 375(12):1445–1450

    Article  MATH  Google Scholar 

  • Nunez JC, Tlelo E, Ramirez C, Jimenez JM (2015) CCII+Based on QFGMOS for implementing chua’s chaotic oscillator. IEEE Latin Am Trans 13(9):2865–2870

    Article  Google Scholar 

  • Ojoniyi OS, Njah AN (2016) A 5D hyperchaotic Sprott B system with coexisting hidden attractors. Chaos Solitons Fractals 87

    Google Scholar 

  • Pang S, Liu Y (2011) A new hyperchaotic system from the Lu system and its control. J Comput Appl Math 235(8):2775–2789

    Article  MathSciNet  MATH  Google Scholar 

  • Pham V-T, Volos C, Jafari S, Wei Z, Wang X (2014) Constructing a novel no-equilibrium chaotic system. Int J Bifurcat Chaos 24(5):1450073

    Article  MathSciNet  MATH  Google Scholar 

  • Pham V-T, Jafari S, Kapitaniak T (2016a) Constructing a chaotic system with an infinite number of equilibrium points. Int J Bifurcat Chaos 26(13):1650225–1650232

    Article  MathSciNet  MATH  Google Scholar 

  • Pham V-T, Jafari S, Volos C, Giakoumis A, Vaidyanathan S, Kapitaniak T (2016b) A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Trans Circuits Syst II Express Briefs 63(9):878–882

    Article  Google Scholar 

  • Pham V-T, Jafari S, Volos C, Vaidyanathand S, Kapitaniake T (2016c) A chaotic system with infinite equilibria located on a piecewise linear curve. Optik 127:9111–9117

    Article  Google Scholar 

  • Pham V-T, Jafari S, Wang X (2016d) A chaotic system with different shapes of equilibria. Int J Bifurcat Chaos 26(4):1650069–1650075

    Article  MathSciNet  MATH  Google Scholar 

  • Pham V, Jafari S, Volos C, Kapitaniak T (2016e) A gallery of chaotic systems with an infinite number of equilibrium points. Chaos Solitons Fractals 93:58–63

    Article  MathSciNet  MATH  Google Scholar 

  • Pham V-T, Volos C, Vaidyanathan S, Wang X (2016f) A chaotic system with an infinite number of equilibrium points dynamics, horseshoe, and synchronization. Adv Math Phys 2016

    Google Scholar 

  • Pham VT, Sundarapandian V, Volos CK, Jafari S, Kuznetsov NV, Hoang TM (2016g) A novel memristive time-delay chaotic system without equilibrium points. Eur Phys J Spec Top 225(1):127–136

    Article  Google Scholar 

  • Pham V, Volos C, Jafari S, Vaidyanathan S, Kapitaniak T, Wang X (2016h) A chaotic system with different families of hidden attractors. Int J Bifurcat Chaos 26(8):1650139–1650148

    Article  MathSciNet  MATH  Google Scholar 

  • Pham V-T, Akgul A, Volos C, Jafari S, Kapitaniak T (2017a) Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable. AEU-Int J Electron Commun 78:134–140

    Article  Google Scholar 

  • Pham V, Kingni ST, Volos C, Jafari S, Kapitaniak T (2017) A simple three-dimensional fractional-order chaotic system without equilibrium: dynamics, circuitry implementation, chaos control and synchronization. AEÜ-Int J Electron Commun (In Press)

    Google Scholar 

  • Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540(4):167–218

    Article  MathSciNet  MATH  Google Scholar 

  • Qi G, Chen G (2015) A spherical chaotic system. Nonlinear Dyn 81(3):1381–1392

    Article  MathSciNet  Google Scholar 

  • Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  MATH  Google Scholar 

  • Ruo-Xun Z, Shi-ping Y (2010) Adaptive synchronisation of fractional-order chaotic systems. Chin Phys B 19(2):1–7

    Google Scholar 

  • Sánchez Valtierra, de la Vega JL, Tlelo-Cuautle E (2015) Simulation of piecewise-linear one-dimensional chaotic maps by Verilog-A. IETE Tech Rev 32(4):304–310

    Article  Google Scholar 

  • Sharma PR, Shrimali MD, Prasad A, Kuznetsov NV, Leonov GA (2015) Control of multistability in hidden attractors. Eur Phys J Spec Top 224(8):1485–1491

    Article  Google Scholar 

  • Shen C, Yu S, Lu J, Chen G (2014a) Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model. IEEE Trans Circuits Syst I Regul Pap 61(8):2380–2389

    Article  Google Scholar 

  • Shen C, Yu S, Lü J, Chen G (2014b) A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans Circuits Syst I Regul Pap 61(3):854–864

    Article  Google Scholar 

  • Singh JP, Roy BK (2015a) A novel asymmetric hyperchaotic system and its circuit validation. Int J Control Theory Appl 8(3):1005–1013

    Google Scholar 

  • Singh JP, Roy BK (2015b) Analysis of an one equilibrium novel hyperchaotic system and its circuit validation. Int J Control Theory Appl 8(3):1015–1023

    Google Scholar 

  • Singh JP, Roy BK (2016a) A Novel hyperchaotic system with stable and unstable line of equilibria and sigma-shaped Poincare map. IFAC-PapersOnLine 49(1):526–531

    Google Scholar 

  • Singh JP, Roy BK (2016b) Comment on “Theoretical analysis and circuit verification for fractional-order chaotic behavior in a new hyperchaotic system”. Math Prob Eng 2014(1):1–4. https://doi.org/10.1155/2014/682408

    Article  MathSciNet  Google Scholar 

  • Singh JP, Roy BK (2016c) The nature of Lyapunov exponents is (+, +, −, −). Is it a hyperchaotic system? Chaos Solitons Fractals 92:73–85

    Article  MathSciNet  MATH  Google Scholar 

  • Singh JP, Roy BK (2017a) Multistability and hidden chaotic attractors in a new simple 4-D chaotic system with chaotic 2-torus behaviour. Int J Dyn Control (In Press). http://doi.org/10.1007/s40435-017-0332-8

  • Singh JP, Roy BK (2017b) The simplest 4-D chaotic system with line of equilibria, chaotic 2-torus and 3-torus behaviour. Nonlinear Dyn. http://doi.org/10.1007/s11071-017-3556-4

  • Singh JP, Roy BK (2017c) Coexistence of asymmetric hidden chaotic attractors in a new simple 4-D chaotic system with curve of equilibria. Optik 2017(145):209–217

    Article  Google Scholar 

  • Singh PP, Singh JP, Roy BK (2014) Synchronization and anti-synchronization of Lu and Bhalekar-Gejji chaotic systems using nonlinear active control. Chaos Solitons Fractals 69:31–39

    Article  MathSciNet  MATH  Google Scholar 

  • Singh JP, Singh PP, Roy BK (2015) PI based sliding mode control for hybrid synchronization of Chen and Liu-Yang chaotic systems with circuit design and simulation. In: 1st IEEE Indian control conference, Chennai, India, pp 257–262

    Google Scholar 

  • Singh JP, Lochan K, Kuznetsov NV, Roy BK (2017a) Coexistence of single- and multi-scroll chaotic orbits in a single-link flexible joint robot manipulator with stable spiral and index-4 spiral repellor types of equilibria. Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3726-4

  • Singh PP, Singh JP, Roy BK (2017b) NAC-based synchronisation and anti-synchronisation between hyperchaotic and chaotic systems, its analogue circuit design and application. IETE J Res 1–17. http://doi.org/10.1080/03772063.2017.1331758

  • Sprott JC (1993) Automatic generation of strange attractors. Comput Graph 17(3):325–332

    Article  Google Scholar 

  • Sprott JC (2000) Simple chaotic systems and circuits. Am J Phys 68(8):758–763

    Article  Google Scholar 

  • Sprott JC (2010) Elegant chaos, algebraically simple chaotic flows. World Scientific Publishing Co. Pte. Ltd

    Google Scholar 

  • Sprott JC (2015) Review strange attractors with various equilibrium types. Eur Phys J Spec Top 224:1409–1419

    Article  Google Scholar 

  • Tlelo-Cuautle E, Ramos-López HC, Sánchez-Sánchez M, Pano-Azucena AD, Sánchez-Gaspariano LA, Núñez-Pérez JC, Camas-Anzueto JL (2014) Application of a chaotic oscillator in an autonomous mobile robot. J Electr Eng 65(3):157–162

    Google Scholar 

  • Tlelo-Cuautle E, Carbajal-Gomez VH, Obeso-Rodelo PJ, Rangel-Magdaleno JJ, Núñez-Pérez JC (2015a) FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn 82(4):1879–1892

    Article  MathSciNet  Google Scholar 

  • Tlelo-Cuautle E, Rangel-Magdaleno JJ, Pano-Azucena AD, Obeso-Rodelo PJ, Nunez-Perez JC (2015b) FPGA realization of multi-scroll chaotic oscillators. Commun Nonlinear Sci Numer Simul 27(1–3):66–80

    Article  MathSciNet  Google Scholar 

  • Tlelo-Cuautle E, Pano-Azucena AD, Rangel-Magdaleno JJ, Carbajal-Gomez VH, Rodriguez-Gomez G (2016a) Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn 85(4):2143–2157

    Article  Google Scholar 

  • Tlelo-Cuautle E, Quintas-Valles ADJ, De La Fraga LG, Rangel-Magdaleno JDJ (2016b) VHDL descriptions for the FPGA implementation of PWL-function-based multi-scroll chaotic oscillators. PLoS ONE 11. http://doi.org/10.1371/journal.pone.0168300

  • Trejo-Guerra R, Tlelo-Cuautle E, Jiménez-Fuentes M, Muñoz-Pacheco JM, Sánchez-López C (2011) Multiscroll floating gate-based integrated chaotic oscillator. Int J Circuit Theory Appl 38(7):689–708

    Google Scholar 

  • Trejo-Guerra R, Tlelo-Cuautle E, Jiménez-Fuentes JM, Sánchez-López C, Muñoz-Pacheco JM, Espinosa-Flores-Verdad G, Rocha-Pérez JM (2012) Integrated circuit generating 3- and 5-scroll attractors. Commun Nonlinear Sci Numer Simul 17(11):4328–4335

    Article  MathSciNet  Google Scholar 

  • Vaidyanathan S (2016) A novel 5-D hyperchaotic system with a line of equilibrium points and its adaptive control. In: Advances and Applications in Chaotic Systems Studies in Computational Intelligence, vol 636

    Google Scholar 

  • Vaidyanathan S, Volos C, Pham V-T (2014) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24(4):409–446

    Article  MathSciNet  MATH  Google Scholar 

  • Vaidyanathan S, Pham VT, Volos CK (2015) A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur Phys J Spec Top 224(8):1575–1592

    Article  Google Scholar 

  • Valtierra JL, Tlelo-Cuautle E, Rodríguez-Vázquez Á (2016) A switched-capacitor skew-tent map implementation for random number generation. Int J Circuit Theory Appl 45(2):305–315

    Article  Google Scholar 

  • Wang X, Chen G (2012) Constructing a chaotic system with any number of equilibria. Nonlinear Dyn 71(3):429–436

    Article  MathSciNet  Google Scholar 

  • Wang B, Shi P, Karimi HR, Song Y, Wang J (2013) Robust H synchronization of a hyper-chaotic system with disturbance input. Nonlinear Anal Real World Appl 14(3):1487–1495

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Vaidyanathan S, Volos C, Pham V-T, Kapitaniak T (2017) Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dyn (In Press). http://doi.org/10.1007/s11071-017-3542-x

  • Wei Z, Sprott JC, Chen H (2015a) Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Phys Lett A 379:2184–2187

    Article  MathSciNet  MATH  Google Scholar 

  • Wei Z, Zhang W, Yao M (2015b) On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system. Nonlinear Dyn 82(3):1251–1258. https://doi.org/10.1007/s11071-015-2230-y

    Article  MathSciNet  MATH  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D 16(3):285–317

    Article  MathSciNet  MATH  Google Scholar 

  • Xiong L, Lu Y-J, Zhang Y-F, Zhang X-G, Gupta P (2016) Design and hardware implementation of a new chaotic secure communication technique. PLoS ONE 11(8):1–19

    Google Scholar 

  • Yang Q, Wei Z, Chen Gua (2010) An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int J Bifurcat Chaos 20(4):1061–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Yu H, Wang J, Deng B, Wei X, Che Y, Wong YK, Chan WL, Tsang KM (2012) Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation. Commun Nonlinear Sci Numer Simul 17(3):1344–1354

    Google Scholar 

  • Yuhua XYX, Wuneng ZWZ, Jianan FJF (2010) On dynamics analysis of a new symmetrical five-term chaotic attractor. In: Proceedings of the 29th Chinese Control Conference, Beijing, China, pp 610–614

    Google Scholar 

  • Zhou P, Yang F (2014) Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points. Nonlinear Dyn 76(1):473–480

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Prakash Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J.P., Roy, B.K. (2018). 5-D Hyperchaotic and Chaotic Systems with Non-hyperbolic Equilibria and Many Equilibria. In: Pham, VT., Vaidyanathan, S., Volos, C., Kapitaniak, T. (eds) Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors. Studies in Systems, Decision and Control, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-319-71243-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71243-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71242-0

  • Online ISBN: 978-3-319-71243-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics