Skip to main content
Log in

On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a chaotic jerk system coexisting with only one non-hyperbolic equilibrium with one zero eigenvalue and a pair of complex conjugate eigenvalues. The system has no classical Hopf bifurcations and belongs to a newly category of chaotic systems. Based on the averaging theory, an analytic proof of the existence of zero-Hopf bifurcation is exhibited. Moreover, unstable periodic orbits from the zero-Hopf bifurcation are obtained. This approach may be useful to clarify chaotic attractors with non-hyperbolic equilibrium hidden behind complicated phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sil’nikov, L.P.: A case of the existence of a countable number of periodic motions. Sov. Math. Docklady 6, 163–166 (1965)

    MATH  Google Scholar 

  2. Sil’nikov, L.P.: A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type. Math. USSR-Shornik 10, 91–102 (1970)

    Article  Google Scholar 

  3. Silva, C.P.: S̆i’lnikov theorem-a tutorial. IEEE Trans. Circuits Syst. I 40, 657–682 (1993)

    Article  Google Scholar 

  4. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  5. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)

    Article  MATH  Google Scholar 

  7. Van der Schrier, G., Maas, L.R.M.: The diffusionless Lorenz equations: Sil’nikov bifurcations and reduction to an explicit map. Phys. D 141, 19–36 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shaw, R.: Strange attractor, chaotic behaviour and information flow. Z. Naturforsch. 36A, 80–112 (1981)

    Google Scholar 

  9. Kuznetsov, N.V., Kuznetsova, O.A., Leonov G.A., Vagaytsev V.I.: Hidden attractor in Chua’s circuits. In: ICINCO 2011—Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics pp. 27–283 (2011)

  10. Kuznetsov, N.V., Leonov, G.A., Seledzhi, S.M.: Hidden oscillations in nonlinear control systems. IFAC Proc. Vol. (IFAC-PapersOnline) 18, 2506–2510 (2011)

    Google Scholar 

  11. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)

    Article  MathSciNet  Google Scholar 

  12. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  15. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, 647–650 (1994)

    Article  MathSciNet  Google Scholar 

  16. Wei, Z.C.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376, 102–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, Q.G., Wei, Z.C.: An unusual 3-D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurc. Chaos 20, 1061–1083 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei, Z.C., Yang, Q.G.: Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria. Nonlinear Anal. Real World Appl. 12, 106–118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, X., Chen, G.R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17, 1264–1272 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wei, Z.C., Yang, Q.G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68, 543–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23, 1350188 (2013)

    Article  Google Scholar 

  22. Li, C.B., Sprott, J.C.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78, 2059–2064 (2014)

    Article  MathSciNet  Google Scholar 

  23. Li, C.B., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24, 1450034 (2014)

    Article  MathSciNet  Google Scholar 

  24. Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69, 531–537 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wei, Z.C., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)

    Article  MathSciNet  Google Scholar 

  26. Wei, Z.C., Zhang, Wei: Hidden hyperchaotic attractors in a modified Lorenz-Tenfold system with only one stable equilibrium. Int. J. Bifurc. Chaos 24, 1450127 (2014)

    Article  Google Scholar 

  27. Zoldi, S.M., Greenside, H.S.: Spatially localized unstable periodic orbits of a high-dimensional chaotic system. Phys. Rev. E 57, 2511–2514 (1998)

  28. Kato, S., Yamada, M.: Unstable periodic solutions embedded in a shell model turbulence. Phys. Rev. E 68, 25302–25305 (2003)

    Article  Google Scholar 

  29. Ishiyama, K., Saiki, Y.: Unstable periodic orbits and chaotic economic growth. Chaos Solitons Fractals 26, 33–42 (2005)

    Article  MATH  Google Scholar 

  30. Guckenheimer, J.: On a codimension two bifurcation. In: Lecture Notes in Math, vol. 898, pp. 99–142. Springer, Berlin (1980)

  31. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. In: Applied Mathematical Sciences, vol. 42. Springer, New York (1990)

  32. Han, M.: Existence of periodic orbits and invariant tori in codimension two bifurcations of three dimensional systems. J. Syst. Sci. Math. Sci. 18, 403–409 (1998)

    MATH  Google Scholar 

  33. Llibre, J., Valls, C.: Hopf bifurcation for some analytic differential systems in \(R^3\) via averaging theory. Discrete Contin. Dyn. Syst. Ser. B 30, 779–790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Llibre, J., Zhang, X.: Hopf bifurcation in higher dimensional differential systems via the averaging method. Pac. J. Math. 240, 321–341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Llibre, J., Chavela, E.P.: Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete Contin. Dyn. Syst. Ser. B 19, 1731–1736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM J. Math. Anal. 15, 1055–1074 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: 2005 International Conference on Physics and Control 1514053, pp. 596–599 (2005)

  39. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17, 1079–1107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuznetsov, N.V., Alexeeva, T.A., Leonov, G.A.: Invariance of Lyapunov characteristic exponents, Lyapunov exponents, and Lyapunov dimension for regular and non-regular linearizations, http://arxiv.org/abs/1410.2016v2, 2014

Download references

Acknowledgments

The authors acknowledge the referees and the editor for carefully reading this paper and suggesting many helpful comments. This work was supported by the Natural Science Foundation of China (11401543, 11290152, 11427802, 41230637), the Natural Science Foundation of Hubei Province (No. 2014CFB897), Beijing Postdoctoral Research Foundation (2015ZZ17), the China Postdoctoral Science Foundation (No. 2014M560028, 2015T80029), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGL150419), and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Zhang, W. & Yao, M. On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system. Nonlinear Dyn 82, 1251–1258 (2015). https://doi.org/10.1007/s11071-015-2230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2230-y

Keywords

Navigation