Skip to main content
Log in

Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a modified canonical Chua’s circuit using an one-stage op-amp-based negative impedance converter and an anti-parallel diode pair. Unlike the conventional Chua’s circuit, this modified canonical Chua’s circuit has one unstable zero node-focus and two stable nonzero node-foci, but complex dynamical behaviors including period, chaos, stable point, and coexisting bifurcation modes are numerically revealed and experimentally verified. Up to six kinds of coexisting multiple attractors, i.e., left-right limit cycles, left-right chaotic spiral attractors and left-right point attractors, are numerically depicted and physically captured. Furthermore, with dimensionless Chua’s equations, dynamical properties of the Chua’s system are investigated, and two symmetric stable nonzero node-foci are validated to exist in the selected parameter regions thus resulting in the emergence of multistability. Specially, multistability with six different steady states is revealed in a narrow parameter range. Within this parameter region, three bifurcation routes are displayed under different initial conditions, and three sets of topologically different and disconnected attractors are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fortuna, L., Frasca, M., Xibilia, M.G.: Chua’s Circuit Implementations: Yesterday, Today and Tomorrow. World Scientific, Singapore (2009)

    Book  Google Scholar 

  2. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc Chaos 23(1), 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 166–174 (2015)

    Article  MathSciNet  Google Scholar 

  4. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)

    Article  Google Scholar 

  5. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000)

    Article  Google Scholar 

  6. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(7), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Minati, L.: Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance. Chaos 24(3), 033110 (2014)

    Article  MathSciNet  Google Scholar 

  8. Yu, S.M., Lü, J.H., Yu, X.H., Chen, G.R.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. I 59(5), 1015–1028 (2012)

    Article  MathSciNet  Google Scholar 

  9. Ma, J., Wu, X.Y., Chu, R.T., Zhang, L.P.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951–1962 (2014)

    Article  Google Scholar 

  10. Li, F., Yao, C.G.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84(4), 2305–2315 (2016)

    Article  MathSciNet  Google Scholar 

  11. Munoz-Pacheco, J.M., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sanchez-Lopez, C., Trejo-Guerra, R.: Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 101(11), 1559–1569 (2014)

    Article  Google Scholar 

  12. Tlelo-Cuautle, E., Pano-Azucena, A.D., Carbajal-Gomez, V.H., Sanchez-Sanchez, M.: Experimental realization of a multiscroll chaotic oscillator with optimal maximum Lyapunov exponent. Sci. World J. 2014, 303614 (2014)

    Google Scholar 

  13. Liu, J., Liu, S.T., Sprott, J.C.: Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dyn. 83(1–2), 1109–1121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, J., Liu, S.T., Zhang, F.F.: A novel four-wing hyperchaotic complex system and its complex modified hybrid projective synchronization with different dimensions. Abstr. Appl. Anal. 2014, 257327 (2014)

    MathSciNet  Google Scholar 

  15. Li, Q.D., Zeng, H.Z., Yang, X.S.: On hidden twin attractors and bifurcation in the Chua’s circuit. Nonlinear Dyn. 77(1–2), 255–266 (2014)

    Article  MathSciNet  Google Scholar 

  16. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637(3), 1–50 (2016)

    Article  MathSciNet  Google Scholar 

  17. Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59(3), 358–363 (2016)

    Article  Google Scholar 

  18. Pham, V.T., Volos, C., Jafari, S., Vaidyanathan, S., Kapitaniak, T., Wang, X.: A chaotic system with different families of hidden attractors. Int. J. Bifurc. Chaos 26(08), 1650139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sprott, J.C., Jafari, S., Pham, V.T., Hosseini, Z.S.: A chaotic system with a single unstable node. Phys. Lett. A 379(36), 2030–2036 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sharma, P.R., Shrimali, M.D., Prasad, A., Leonov, G.A., Kuznetsov, N.V.: Controlling dynamics of hidden attractors. Int. J. Bifurc. Chaos 25(4), 1550061 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wei, Z.C., Yu, P., Zhang, W., Yao, M.H.: Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system. Nonlinear Dyn. 82(1–2), 131–141 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bao, B.C., Li, Q.D., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26(4), 043111 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yu, P., Chen, G.: Hopf bifurcation control using nonlinear feedback with polynomial functions. Int. J. Bifurc. Chaos 14(05), 1683–704 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Q.G., Chen, G.R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18(5), 1393–1414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65(4), 457–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal.: Real World Appl. 11(4), 2563–2572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C.B., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurc. Chaos 24(10), 1450131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurc. Chaos 25(4), 1550052 (2015)

    Article  MathSciNet  Google Scholar 

  29. Ngouonkadi, E.B.M., Fotsin, H.B., Fotso, P.L., Tamba, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended hindmarsh-rose neuronal oscillator. Chaos Solitons Fract. 85, 151–163 (2016)

    Article  MathSciNet  Google Scholar 

  30. Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83(1–2), 751–765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: Attractors manipulation and robustness. Chaos 25, 053112 (2015)

    Article  MathSciNet  Google Scholar 

  32. Patel, M.S., Patel, U., Sen, A., Sethia, G.C., Hens, C., Dana, S.K., Feudel, U., Showalter, K., Ngonghala, C.N., Amritkar, R.E.: Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. Phys. Rev. E 89(2), 022918 (2014)

  33. Jaros, P., Perlikowski, P., Kapitaniak, T.: Synchronization and multistability in the ring of modified Rössler oscillators. Eur. Phys. J. Spec. Top. 224(8), 1541–1552 (2015)

    Article  Google Scholar 

  34. Kengne, J., Tabekoueng, Z.N., Tamba, V.K., Negou, A.N.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos 25(10), 103126 (2015)

    Article  MathSciNet  Google Scholar 

  35. Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos, Solitons Fract. 83, 186–200 (2016)

    Article  MathSciNet  Google Scholar 

  36. Bao, B.C., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52(12), 1008–1010 (2016)

  37. Bao, B.C., Zhou, X., Liu, Z., Hu, F.W.: Generalized memory element and chaotic memory system. Int. J. Bifurc. Chaos 23(8), 1350135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014)

    Article  MathSciNet  Google Scholar 

  39. Morfu, S., Nofiele, B., Marquié, P.: On the use of multistability for image processing. Phys. Lett. A 367(3), 192–198 (2007)

    Article  MATH  Google Scholar 

  40. Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)

  41. Sharma, P.R., Shrimali, M.D., Prasad, A., Feudel, U.: Controlling bistability by linear augmentation. Phys. Lett. A 377(37), 2329–2332 (2013)

    Article  MathSciNet  Google Scholar 

  42. Geltrude, A., Al-Naimee, K., Euzzor, S., Meucci, R., Arecchi, F.T., Goswami, B.K.: Feedback control of bursting and multistability in chaotic systems. Coummun. Nonlinear Sci. Numer. Simul. 17(7), 3031–3039 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hens, C.R., Banerjee, R., Feudel, U., Dana, S.K.: How to obtain extreme multistability in coupled dynamical systems. Phys. Rev. E 85(3), 729–734 (2012)

    Google Scholar 

  44. Li, C.B., Sprott, J.C.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78(3), 2059–2064 (2014)

    Article  MathSciNet  Google Scholar 

  45. Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)

    Article  Google Scholar 

  46. Chua, L.O., Lin, G.N.: Canonical realization of Chua’s circuit family. IEEE Trans. Circuit Syst. 37(7), 885–902 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bao, B.C., Wang, N., Chen, M., Xu, Q., Wang, J.: Inductor-free simplified Chua’s circuit only using two-op-amp-based realization. Nonlinear Dyn. 84, 511–525 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 51277017 and 61601062, the Natural Science Foundation of Jiangsu Province, China under Grant No. BK20160282, and the Scientific Research Foundation of Jiangsu Provincial Education Department, China under Grant No. 15KJB510001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bocheng Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xu, Q., Lin, Y. et al. Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn 87, 789–802 (2017). https://doi.org/10.1007/s11071-016-3077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3077-6

Keywords

Navigation