Skip to main content

polyDB: A Database for Polytopes and Related Objects

  • Chapter
  • First Online:
Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory

Abstract

polyDB is a database for discrete geometric objects independent of a particular software. The database is accessible via web and an interface from the software package polymake. It contains various datasets from the area of lattice polytopes, combinatorial polytopes, matroids and tropical geometry.

In this short note we introduce the structure of the database and explain its use with a computation of the free sums and certain skew bipyramids among the class of smooth Fano polytopes in dimension up to 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A perl driver for MongoDB (2016). Available at search.cpan.org/perldoc?MongoDB

  2. O. Aichholzer, Extremal properties of 0/1-polytopes of dimension 5, in Polytopes—Combinatorics and Computation (Oberwolfach, 1997), vol. 29, ed. by G. Kalai, G.M. Ziegler, DMV Seminar (Birkhäuser, Basel, 2000), pp. 111–130, http://www.ist.tugraz.at/staff/aichholzer/research/rp/rcs/info01poly/www.ist.tugraz.at/staff/aichholzer/research/rp/rcs/info01poly

    Chapter  Google Scholar 

  3. R. Altman, J. Gray, Y.H. He, V. Jejjala, B.D. Nelson, A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list. J. High Energy Phys. (2) 158, front matter+48 (2015)

    Google Scholar 

  4. B. Assarf, E. Gawrilow, K. Herr, M. Joswig, B. Lorenz, A. Paffenholz, T. Rehn, Polymake in linear and integer programming. Math. Program. Comput. (2014, to appear). Available at arxiv:1408.4653

  5. B. Assarf, M. Joswig, A. Paffenholz, Smooth Fano polytopes with many vertices. Discrete Comput. Geom. 52, 153–194 (2014)

    Article  MathSciNet  Google Scholar 

  6. B. Baumeister, C. Haase, B. Nill, A. Paffenholz, On permutation polytopes. Adv. Math. 222(2), 431–452 (2009)

    Article  MathSciNet  Google Scholar 

  7. H.U. Besche, B. Eick, E. O’Brien, Small groups library (2002). Available at www.icm.tu-bs.de/ag_algebra/software/small/

  8. G. Brown, A. Kasprzyk, The graded rings database. Available at www.grdb.co.uk

  9. W. Bruns, B. Ichim, T. Römer, R. Sieg, C. Söger, Normaliz. Algorithms for rational cones and affine monoids. J. Algebra 324, 1098–1113 (2010). Available at www.normaliz.uni-osnabrueck.de

  10. G. Ewald, Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics, vol. 168 (Springer, New York, 1996)

    Google Scholar 

  11. L. Finschi, K. Fukuda, Combinatorial generation of small point configurations and hyperplane arrangements, in Discrete and Computational Geometry. Algorithms and Combinatorics, vol. 25 (Springer, Berlin, 2003), pp. 425–440

    MATH  Google Scholar 

  12. K. Fukuda, H. Miyata, S. Moriyama, Complete enumeration of small realizable oriented matroids. Discrete Comput. Geom. 49(2), 359–381 (2013)

    Google Scholar 

  13. H.G. Gräbe, Semantic-aware fingerprints of symbolic research data, in Mathematical Software ICMS 2016, vol. 9725, ed. by G.M. Greuel, T. Koch, P. Paule, A. Sommese. Theoretical Computer Science and General Issues (Springer, Cham, 2016)

    Google Scholar 

  14. R. Grinis, A. Kasprzyk, Normal forms of convex lattice polytopes (2013). Available at arxiv:1301.6641

  15. D. Hensley, Lattice vertex polytopes with interior lattice points. Pac. J. Math. 105(1), 183–191 (1983)

    Article  MathSciNet  Google Scholar 

  16. A. Higashitani, Equivalence classes for smooth Fano polytopes (2015). Available at arxiv:1503.06434

  17. S. Horn, Tropical oriented matroids and cubical complexes. Ph.D. thesis, 2012

    Google Scholar 

  18. S. Horn, A. Paffenholz, Lattice normalization: a polymake extension for lattice isomorphism checks (2014). Available at github.com/apaffenholz/lattice_normalization

  19. S. Horn, A. Paffenholz, polyDB: a database extension for polymake (2014). Available at github.com/solros/poly_db

  20. M. Joswig, Polytropes in the tropical projective 3-torus (2016). Available at homepages.math.tu-berlin.de/~joswig/polymake/data/

  21. M. Joswig, K. Kulas, Tropical and ordinary convexity combined. Adv. Geom. 10(2), 333–352 (2010)

    Google Scholar 

  22. M. Joswig, B. Müller, A. Paffenholz, polymake and lattice polytopes, in 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), ed. by C. Krattenthaler, V. Strehl, M.N. Kauers. Discrete Mathematics and Theoretical Computer Science Proceedings, AK (Association of Discrete Mathematics and Theoretical Computer Science, Nancy, 2009), pp. 491–502

    Google Scholar 

  23. T. Junttila, P. Kaski, bliss: a tool for computing automorphism groups and canonical labelings of graphs (2011). Available at www.tcs.hut.fi/Software/bliss/

  24. A.M. Kasprzyk, B. Nill, Reflexive polytopes of higher index and the number 12 (2011). Available at arxiv:1107.4945

  25. T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna, G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D.E. Steffy, K. Wolter, MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011). Available at mpc.zib.de/index.php/MPC/article/view/56/28

  26. M. Kreuzer, H. Skarke, Calabi-yau data (1997). Available at hep.itp.tuwien.ac.at/~kreuzer/CY/

  27. K. Kulas, Coarse types of tropical matroid polytopes (2010). Available at arxiv:1012.3053

  28. J.C. Lagarias, G.M. Ziegler, Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Can. J. Math. 43(5), 1022–1035 (1991). https://doi.org/10.4153/CJM-1991-058-4

    Article  MathSciNet  Google Scholar 

  29. B. McKay, nauty 2.5 (2013). Available at cs.anu.edu.au/~bdm/nauty/

  30. H. Miyata, S. Moriyama, K. Fukuda, Classification of oriented matroids (2013). Available at www-imai.is.s.u-tokyo.ac.jp/~hmiyata/oriented_matroids/

  31. Mongodb v3.2 (2016). Available at www.mongodb.com

  32. B. Nill, A. Paffenholz, Examples of Kähler-Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes. Beitr. Algebra Geom. 52(2), 297–304 (2011). https://doi.org/10.1007/s13366-011-0041-y

    Article  MathSciNet  Google Scholar 

  33. M. Øbro, Classification of Smooth Fano Polytopes. Ph.D. thesis, University of Aarhus, 2007. Available at pure.au.dk/portal/files/41742384/imf_phd_2008_moe.pdf

  34. A. Paffenholz, Faces of Birkhoff polytopes. Electron. J. Combin. 22(1), Paper 1.67, 36 (2015)

    Google Scholar 

  35. A. Paffenholz, polymake_smooth_fano: scripts for decompositions of Fano polytopes (2016). Available at github.com/apaffenholz/polymake_smooth_fano

  36. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12. The GAP Group (2008). Available at www.gap-system.org

  37. The Magma Group, Magma computational algebra system (2017). Available at magma.maths.usyd.edu.au/magma/

  38. The polymake-Team, polymake release 3.1 (2017). Available at github.com/polymake/polymake

  39. N.M. Tran, Polytropes and tropical eigenspaces: cones of linearity. Discrete Comput. Geom. 51(3), 539–558 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Paffenholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paffenholz, A. (2017). polyDB: A Database for Polytopes and Related Objects. In: Böckle, G., Decker, W., Malle, G. (eds) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-70566-8_23

Download citation

Publish with us

Policies and ethics