Skip to main content
Log in

Examples of Kähler–Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

In this note we report on examples of 7- and 8-dimensional toric Fano manifolds whose associated reflexive polytopes are not symmetric, but they still admit a Kähler–Einstein metric. This answers a question first posed by Batyrev and Selivanova. The examples were found in the classification of ≤8-dimensional toric Fano manifolds obtained by Øbro. We also discuss related open questions and conjectures. In particular, we notice that the alpha-invariants of these examples do not satisfy the assumptions of Tian’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batyrev V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)

    MathSciNet  MATH  Google Scholar 

  • Batyrev V.V., Selivanova E.: Einstein–Kähler metrics on symmetric toric Fano manifolds. J. Reine Angew. Math. 512, 225–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bishop R.L., Crittenden R.J.: Geometry of Manifolds. Academic Press, New York (1964)

    MATH  Google Scholar 

  • Bruns, W., Ichim, B.: Normaliz 2.2 (2009). http://www.math.uos.de/normaliz

  • Chan K., Leung N.C.: Miyaoka–Yau-type inequalities for Kähler–Einstein manifolds. Commun. Anal. Geom. 15, 359–379 (2007)

    MathSciNet  MATH  Google Scholar 

  • Chel’tsov I.A., Shramov K.A.: Log canonical thresholds of smooth Fano threefolds. Russ. Math. Surv. 63(5), 859–958 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheltsov, I., Shramov, C.: Extremal metrics on del Pezzo threefolds (2008). arXiv:0810.1924

  • Cheltsov, I., Shramov, C.: Del Pezzo zoo (2009). arXiv:0904.0114

  • Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved problems in geometry. In: Problem Books in Mathematics 2. Springer, New York (1991)

  • Debarre O.: Higher-dimensional algebraic geometry. Universitext, Springer, New York (2001)

    MATH  Google Scholar 

  • Ehrhart E.: généralisation du théorème de Minkowski. C. R. Acad. Sci. Paris. 240, 483–485 (1955)

    MathSciNet  MATH  Google Scholar 

  • Futaki, A., Ono, H., Sano, Y.: Hilbert series and obstructions to asymptotic semistability (2008). arXiv:0811.1315

  • Gauntlett J.P., Martelli D., Sparks J., Yau S.-T.: Obstructions to the Existence of Sasaki–Einstein Metrics. Commun. Math. Phys. 273, 803–827 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Gritzmann, P., Wills, J.M.: Lattice points. In: Handbook of Convex Geometry, pp. 765–797, North-Holland, Amsterdam (1993)

  • Joswig, M., Müller, B., Paffenholz, A.: Polymake and lattice polytopes. In: Krattenthaler, C., Strehl, V., Kauers, M. (eds.) DMTCS Proceedings of the FPSAC 2009, pp. 491–502 (2009)

  • Mabuchi T.: Einstein–Kähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24, 705–737 (1987)

    MathSciNet  MATH  Google Scholar 

  • McKay, B.: nauty 2.2 (2008). http://cs.anu.edu.au/~bdm/nauty/

  • Nill, B.: Gorenstein toric Fano varieties, PhD thesis, Mathematisches Institut Tübingen (2005). http://w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1888

  • Nill B.: Complete toric varieties with reductive automorphism group. Mathematische Zeitschrift 252, 767–786 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Nill, B., Paffenholz, A.: Examples of non-symmetric Kähler–Einstein toric Fano manifolds (2009). arXiv:0905.2054

  • Øbro, M.: An algorithm for the classification of smooth Fano polytopes (2007). arXiv:0704.0049

  • Ono, H., Sano, Y., Yotsutani, N.: An example of asymptotically Chow unstable manifolds with constant scalar curvature (2009). arXiv:0906.3836

  • Pikhurko O.: Lattice points in lattice polytopes. Mathematika 48, 15–24 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Sano, Y.: Multiplier ideal sheaves and the Kähler–Ricci flow on toric Fano manifolds with large symmetry (2008). arXiv:0811.1455

  • Song J.: The α-invariant on toric Fano manifolds. Am. J. Math. 127, 1247–1259 (2005)

    Article  MATH  Google Scholar 

  • Sparks, J.: New Results in Sasaki-Einstein Geometry. In: Riemannian Topology and Geometric Structures on Manifolds (Progress in Mathematics). Birkhäuser, Basel (2008)

  • Tian G.: Kähler–Einstein metrics on certain Kähler manifolds with c 1(M) > 0. Invent. Math. 89, 225–246 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X., Zhu X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Nill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nill, B., Paffenholz, A. Examples of Kähler–Einstein toric Fano manifolds associated to non-symmetric reflexive polytopes. Beitr Algebra Geom 52, 297–304 (2011). https://doi.org/10.1007/s13366-011-0041-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-011-0041-y

Keywords

Mathematics Subject Classification (2000)

Navigation