Skip to main content

Targeted Therapies in Breast Cancer

  • Chapter
  • First Online:
Resistance to Targeted Therapies in Breast Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 16))

  • 498 Accesses

Abstract

As the most prevalent form of cancer found in women, breast cancer is an active area of research and clinical study. Treatments for cancer patients have traditionally relied upon chemotherapy, but an increasing emphasis is placed on targeted therapies as a safer and more effective way to treat cancer. Therapies that target specific aspects of cancerous cells may be especially significant for triple negative breast cancer (TNBC), which is often associated with poor patient prognosis and currently lacks reliable targeted treatment options. Many therapies for breast cancer have been extensively studied and examined in clinical settings, while others show future potential and require further investigation. This chapter will focus on six targeted therapies, describing mechanisms of action and current methods of inhibition. Inducible nitric oxide synthase (iNOS) overexpression is correlated with increased cell proliferation and mammosphere production, while inhibition has been shown to minimize these effects in cancerous cells. The PI3K pathway is an essential component of intracellular signaling that is frequently dysregulated in tumors. Poly(ADP-ribose) polymerases (PARP) are implicated in DNA damage repair, and are the focus of numerous ongoing clinical trials. Protein tyrosine kinase 6 (PTK6) has been associated with cell proliferation and tumor growth in breast cancer cells, while the serine/threonine cyclin-dependent kinase (CDK) protein family is a crucial component of cell cycle regulation and an important area of research for targeted therapies. Finally, aberrant activation of the Wnt/β-catenin signaling pathway has been implicated in multiple breast cancer subtypes, particularly with respect to the prevalence β-catenin mutations in TNBC. These pathways represent promising topics in the field of targeted therapies, and with increased research may contribute to the development of superior and precise treatments for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

APC:

Adenomatous polyposis coli

CDK:

Cyclin-dependent kinase

CK1α:

Casein kinase-1α

CSC:

Cancer stem cell

DSB:

Double-stranded break

DVL:

Dishevelled

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

FAK:

Focal adhesion kinase

FOXM1:

Forkhead box M1

FZD:

Frizzled

GSK3β:

Glycogen synthase kinase 3β

HER2:

Human epidermal growth factor 2

HR:

Homologous recombination

HR+:

Hormone receptor-positive

iNOS:

Inducible nitric oxide synthase

NOS:

Nitric oxide synthase

NSAID:

Nonsteroidal anti-inflammatory drug

PARP:

Poly(ADP-Ribose) polymerase

PARPi:

PARP inhibitor

PI3K:

Phosphoinositide 3-kinase

Prcn:

Porcupine

PTEN:

Phosphatase and tensin homolog

PTK6:

Protein tyrosine kinase 6

Rb:

Retinoblastoma

RTK:

Receptor tyrosine kinase

SSD:

Single-stranded break

STAT:

Signal transducer and activator of transcription

TCF/LEF:

T-cell factor/lymphoid enhancer factor

TNBC:

Triple-negative breast cancer

References

  1. Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, Zhao H, Landis MD, et al. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res: BCR. 2015;17:25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA, Martin DN, Switzer CH, Hudson RS, Wink DA, Lee DH, Stephens RM, et al. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 2010;120:3843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jadeski LC, Chakraborty C, Lala PK. Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer. 2003;106:496–504.

    Article  CAS  PubMed  Google Scholar 

  4. Rudge SA, Wakelam MJ. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res. 2016;57:176–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11:329–41.

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Ding J, Meng LH. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin. 2015;36:1170–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barnes KR, Blois J, Smith A, Yuan H, Reynolds F, Weissleder R, Cantley LC, Josephson L. Fate of a bioactive fluorescent wortmannin derivative in cells. Bioconjug Chem. 2008;19:130–7.

    Article  CAS  PubMed  Google Scholar 

  9. Chen JS, Zhou LJ, Entin-Meer M, Yang X, Donker M, Knight ZA, Weiss W, Shokat KM, Haas-Kogan D, Stokoe D. Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther. 2008;7:841–50.

    Article  CAS  PubMed  Google Scholar 

  10. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12:395–402.

    Article  CAS  PubMed  Google Scholar 

  12. Elster N, Cremona M, Morgan C, Toomey S, Carr A, O’Grady A, Hennessy BT, Eustace AJ. A preclinical evaluation of the PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib. Breast Cancer Res Treat. 2015;149:373–83.

    Article  CAS  PubMed  Google Scholar 

  13. Livraghi L, Garber JE. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 2015;13:188.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol. 2011;5:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bouwman P, Jonkers J. Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors? Clin Cancer Res. 2014;20:540–7.

    Article  CAS  PubMed  Google Scholar 

  16. Gilardini Montani MS, Prodosmo A, Stagni V, Merli D, Monteonofrio L, Gatti V, Gentileschi MP, Barila D, Soddu S. ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. J Exp Clin Cancer Res. 2013;32:95.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nagasawa S, Sedukhina AS, Nakagawa Y, Maeda I, Kubota M, Ohnuma S, Tsugawa K, Ohta T, Roche-Molina M, Bernal JA, Narvaez AJ, Jeyasekharan AD, et al. LSD1 overexpression is associated with poor prognosis in basal-like breast cancer, and sensitivity to PARP inhibition. PLoS One. 2015;10:e0118002.

    Article  PubMed  PubMed Central  Google Scholar 

  18. van der Noll R, Marchetti S, Steeghs N, Beijnen JH, Mergui-Roelvink MW, Harms E, Rehorst H, Sonke GS, Schellens JH. Long-term safety and anti-tumour activity of olaparib monotherapy after combination with carboplatin and paclitaxel in patients with advanced breast, ovarian or fallopian tube cancer. Br J Cancer. 2015;113:396–402.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Isakoff SJ. PARP inhibition outside of BRCA mutation carriers. Clin Adv Hematol Oncol. 2010;8:757–8.

    PubMed  Google Scholar 

  20. Brauer PM, Tyner AL. Building a better understanding of the intracellular tyrosine kinase PTK6 - BRK by BRK. Biochim Biophys Acta. 2010;1806:66–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vasioukhin V, Serfas MS, Siyanova EY, Polonskaia M, Costigan VJ, Liu B, Thomason A, Tyner AL. A novel intracellular epithelial cell tyrosine kinase is expressed in the skin and gastrointestinal tract. Oncogene. 1995;10:349–57.

    CAS  PubMed  Google Scholar 

  22. Kamalati T, Jolin HE, Mitchell PJ, Barker KT, Jackson LE, Dean CJ, Page MJ, Gusterson BA, Crompton MR. Brk, a breast tumor-derived non-receptor protein-tyrosine kinase, sensitizes mammary epithelial cells to epidermal growth factor. J Biol Chem. 1996;271:30956–63.

    Article  CAS  PubMed  Google Scholar 

  23. Chen HY, Shen CH, Tsai YT, Lin FC, Huang YP, Chen RH. Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin. Mol Cell Biol. 2004;24:10558–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Groner B, Lucks P, Borghouts C. The function of Stat3 in tumor cells and their microenvironment. Semin Cell Dev Biol. 2008;19:341–50.

    Article  CAS  PubMed  Google Scholar 

  25. Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A, Frank DA. Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res. 2009;7:966–76.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, Gierut J, Wang Z, Miao J, Asara JM, Tyner AL. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene. 2013;32:4304–12.

    Article  CAS  PubMed  Google Scholar 

  27. Irie HY, Shrestha Y, Selfors LM, Frye F, Iida N, Wang Z, Zou L, Yao J, Lu Y, Epstein CB, Natesan S, Richardson AL, et al. PTK6 regulates IGF-1-induced anchorage-independent survival. PLoS One. 2010;5:e11729.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park SH, Ito K, Olcott W, Katsyv I, Halstead-Nussloch G, Irie HY. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim. Breast Cancer Res: BCR. 2015;17:86.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ito K, Park SH, Nayak A, Byerly JH, Irie HY. PTK6 inhibition suppresses metastases of triple-negative breast cancer via SNAIL-dependent E-cadherin regulation. Cancer Res. 2016;76:4406–17.

    Article  CAS  PubMed  Google Scholar 

  30. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26:3637–43.

    Article  CAS  PubMed  Google Scholar 

  31. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016;45:129–38.

    Article  CAS  PubMed  Google Scholar 

  32. Nichols M. New directions for drug-resistant breast cancer: the CDK4/6 inhibitors. Future Med Chem. 2015;7:1473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  34. Baker SJ, Reddy EP. CDK4: a key player in the cell cycle, development, and cancer. Genes Cancer. 2012;3:658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol: Off J Am Soc Clin Oncol. 2006;24:1770–83.

    Article  CAS  Google Scholar 

  36. Xu H, Yu S, Liu Q, Yuan X, Mani S, Pestell RG, Wu K. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J Hematol Oncol. 2017;10:97.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rihani A, Vandesompele J, Speleman F, Van Maerken T. Inhibition of CDK4/6 as a novel therapeutic option for neuroblastoma. Cancer Cell Int. 2015;15:76.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McCain J. First-in-class CDK4/6 inhibitor Palbociclib could usher in a new wave of combination therapies for HR+, HER2− breast cancer. Pharm Ther. 2015;40:511–20.

    Google Scholar 

  39. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20:620–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, Campone M, Blackwell KL, Andre F, Winer EP, Janni W, Verma S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375:1738–48.

    Article  CAS  PubMed  Google Scholar 

  41. Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, Lockerman EL, Pollack SF, Liu M, Li X, Lehar J, Wiesmann M, et al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell. 2014;26:136–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fujiwara Y, Tamura K, Kondo S, Tanabe Y, Iwasa S, Shimomura A, Kitano S, Ogasawara K, Turner PK, Mori J, Asou H, Chan EM, et al. Phase 1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer. Cancer Chemother Pharmacol. 2016;78:281–8.

    Article  CAS  PubMed  Google Scholar 

  43. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW, Hilton JF, Nasir A, Beckmann RP, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6:740–53.

    Article  CAS  PubMed  Google Scholar 

  44. Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK, Clarke R, Knudsen ES. Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer. 2011;18:333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McClendon AK, Dean JL, Rivadeneira DB, JE Y, Reed CA, Gao E, Farber JL, Force T, Koch WJ, Knudsen ES. CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle. 2012;11:2747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gogolin S, Ehemann V, Becker G, Brueckner LM, Dreidax D, Bannert S, Nolte I, Savelyeva L, Bell E, Westermann F. CDK4 inhibition restores G(1)-S arrest in MYCN-amplified neuroblastoma cells in the context of doxorubicin-induced DNA damage. Cell Cycle. 2013;12:1091–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prosperi JR, Goss KH. A Wnt-ow of opportunity: targeting the Wnt/beta-catenin pathway in breast cancer. Curr Drug Targets. 2010;11:1074–88.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed K, Shaw HV, Koval A, Katanaev VL. A second WNT for old drugs: drug repositioning against WNT-dependent cancers. Cancers (Basel). 2016;8:66.

    Article  Google Scholar 

  49. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010;176:2911–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Karim R, Tse G, Putti T, Scolyer R, Lee S. The significance of the Wnt pathway in the pathology of human cancers. Pathology. 2004;36:120–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, et al. Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110:20224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5:997–1014.

    Article  CAS  PubMed  Google Scholar 

  54. Solzak JP, Atale RV, Hancock BA, Sinn AL, Pollok KE, Jones DR, Radovich M. Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer. NPJ Breast Cancer. 2017;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA, Li Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/beta-catenin pathway. PLoS One. 2011;6:e29290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol. 2012;2012:950658.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stefanski CD, Prosperi JR. 2018. Role of Wnt/β -catenin pathway in cancer signaling. In: Predictive Biomarkers in Oncology: Applications in Precision Medicine (Eds: George Kumar and Sunil Badve). In press.

    Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Casey Stefanski for critical review of the document. Work in the Prosperi laboratory is supported by the Navari Family Foundation and the Indiana Clinical and Translational Sciences Institute, funded in part by grant #UL1 TR001108 (A. Shekhar, PI) from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. The awards were made to JRP. ATL was supported by a COS-SURF fellowship through the University of Notre Dame.

No Conflict Statement

“No potential conflicts of interest were disclosed.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenifer R. Prosperi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyons, A.T., Prosperi, J.R. (2017). Targeted Therapies in Breast Cancer. In: Prosperi, J. (eds) Resistance to Targeted Therapies in Breast Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-70142-4_6

Download citation

Publish with us

Policies and ethics