Skip to main content

Pulmonary Complications of Heterotaxy Syndromes

  • Chapter
  • First Online:
Pulmonary Complications of Non-Pulmonary Pediatric Disorders

Part of the book series: Respiratory Medicine ((RM))

  • 634 Accesses

Abstract

Pulmonary diseases among patients with heterotaxy syndrome are caused by a common underlying pathophysiological mechanism of ciliary dysfunction. Cilia are cell membrane-bound organelles which have a wide range of motile functions such as moving cells and extracellular fluid and non-motile functions including sensory interactions with the extracellular environment and signaling. Downstream effects of cilia likely involve a complex interaction of both motile and non-motile functions. Some ciliary genetic defects can cause impaired motility and sensation at the primitive node and abnormal L-R axis determination during embryogenesis, leading to situs inversus totalis or heterotaxy. Abnormal motile cilia on respiratory epithelial cells can compromise mucociliary clearance of airways and sinuses causing primary ciliary dyskinesia (PCD), a disease characterized by chronic coughing, chronic rhinosinusitis, neonatal respiratory distress, and eventual bronchiectasis. Approximately 50% of patients with PCD have laterality defects, but the incidence of PCD and respiratory epithelial ciliary impairment among patients with heterotaxy is not known. Ciliary defects cause a number of additional ciliopathy syndromes affecting the heart, kidneys, eyes, brain, and liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cardenas-Rodriguez M, Badano JL. Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet C Semin Med Genet. 2009;151C(4):263–80.

    Article  CAS  PubMed  Google Scholar 

  2. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69:377–400.

    Article  CAS  PubMed  Google Scholar 

  3. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123(Pt 4):499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ostrowski LE, Dutcher SK, Lo CW. Cilia and models for studying structure and function. Proc Am Thorac Soc. 2011;8(5):423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferkol TW, Leigh MW. Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr. 2012;160(3):366–71.

    Article  PubMed  Google Scholar 

  6. Ware SM, Aygun MG, Hildebrandt F. Spectrum of clinical diseases caused by disorders of primary cilia. Proc Am Thorac Soc. 2011;8(5):444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Horani A, Ferkol TW, Dutcher SK, Brody SL. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev. 2016;18:18–24.

    PubMed  Google Scholar 

  8. Narayan D, Krishnan SN, Upender M, Ravikumar TS, Mahoney MJ, Dolan TF Jr, et al. Unusual inheritance of primary ciliary dyskinesia (Kartagener’s syndrome). J Med Genet. 1994;31(6):493–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006;43(4):326–33.

    Article  CAS  PubMed  Google Scholar 

  10. Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet. 2006;120(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  11. Torgersen J. Situs inversus, asymmetry, and twinning. Am J Hum Genet. 1950;2(4):361–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Katsuhara K, Kawamoto S, Wakabayashi T, Belsky JL. Situs inversus totalis and Kartagener’s syndrome in a Japanese population. Chest. 1972;61(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  13. Davis SD, Ferkol TW, Rosenfeld M, Lee HS, Dell SD, Sagel SD, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med. 2015;191(3):316–24.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kennedy MP, Noone PG, Leigh MW, Zariwala MA, Minnix SL, Knowles MR, et al. High-resolution CT of patients with primary ciliary dyskinesia. Am J Roentgenol. 2007;188(5):1232–8.

    Article  Google Scholar 

  15. Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004;169(4):459–67.

    Article  PubMed  Google Scholar 

  16. Pruliere-Escabasse V, Coste A, Chauvin P, Fauroux B, Tamalet A, Garabedian EN, et al. Otologic features in children with primary ciliary dyskinesia. Arch Otolaryngol Head Neck Surg. 2010;136(11):1121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Majithia A, Fong J, Hariri M, Harcourt J. Hearing outcomes in children with primary ciliary dyskinesia—a longitudinal study. Int J Pediatr Otorhinolaryngol. 2005;69(8):1061–4.

    Article  CAS  PubMed  Google Scholar 

  18. Munro NC, Currie DC, Lindsay KS, Ryder TA, Rutman A, Dewar A, et al. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax. 1994;49(7):684–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Halbert SA, Patton DL, Zarutskie PW, Soules MR. Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum Reprod. 1997;12(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  20. Mullowney T, Manson D, Kim R, Stephens D, Shah V, Dell S. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics. 2014;134(6):1160–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. 2016;51(2):115–32.

    Article  PubMed  Google Scholar 

  22. Werner C, Lablans M, Ataian M, Raidt J, Wallmeier J, Grosse-Onnebrink J, et al. An international registry for primary ciliary dyskinesia. Eur Respir J. 2016;47(3):849–59.

    Article  PubMed  Google Scholar 

  23. Leigh MW, Ferkol TW, Davis SD, Lee HS, Rosenfeld M, Dell SD, et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann Am Thorac Soc. 2016;13(8):1305–13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J. 1997;10(10):2376–9.

    Article  CAS  PubMed  Google Scholar 

  25. Maglione M, Bush A, Nielsen KG, Hogg C, Montella S, Marthin JK, et al. Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. Pediatr Pulmonol. 2014;49(12):1243–50.

    Article  PubMed  Google Scholar 

  26. Marthin JK, Petersen N, Skovgaard LT, Nielsen KG. Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med. 2010;181(11):1262–8.

    Article  PubMed  Google Scholar 

  27. Shah A, Shoemark A, MacNeill SJ, Bhaludin B, Rogers A, Bilton D, et al. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur Respir J. 2016;48(2):441–50.

    Article  PubMed  Google Scholar 

  28. Alanin MC, Nielsen KG, von Buchwald C, Skov M, Aanaes K, Hoiby N, et al. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia. Clin Microbiol Infect. 2015;21(12):1093 e1–7.

    Article  Google Scholar 

  29. Strippoli MP, Frischer T, Barbato A, Snijders D, Maurer E, Lucas JS, et al. Management of primary ciliary dyskinesia in European children: recommendations and clinical practice. Eur Respir J. 2012;39(6):1482–91.

    Article  PubMed  Google Scholar 

  30. Knowles MR, Leigh MW, Carson JL, Davis SD, Dell SD, Ferkol TW, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012;67(5):433–41.

    Article  PubMed  Google Scholar 

  31. Olin JT, Burns K, Carson JL, Metjian H, Atkinson JJ, Davis SD, et al. Diagnostic yield of nasal scrape biopsies in primary ciliary dyskinesia: a multicenter experience. Pediatr Pulmonol. 2011;46(5):483–8.

    PubMed  PubMed Central  Google Scholar 

  32. O'Callaghan C, Rutman A, Williams GM, Hirst RA. Inner dynein arm defects causing primary ciliary dyskinesia: repeat testing required. Eur Respir J. 2011;38(3):603–7.

    Article  PubMed  CAS  Google Scholar 

  33. Daniels LA, Leigh MW, Knowles M The diagnostic dilemma of primary ciliary dyskinesia: experience of the GDMCC consortium; In: RDCRN Conference on Clinical Research for Rare Diseases, Bethesda, Maryland; 2010.

    Google Scholar 

  34. Walker WT, Jackson CL, Lackie PM, Hogg C, Lucas JS. Nitric oxide in primary ciliary dyskinesia. Eur Respir J. 2012;40(4):1024–32.

    Article  CAS  PubMed  Google Scholar 

  35. Leigh MW, Hazucha MJ, Chawla KK, Baker BR, Shapiro AJ, Brown DE, et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc. 2013;10(6):574–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Collins SA, Gove K, Walker W, Lucas JS. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J. 2014;44(6):1589–99.

    Article  PubMed  Google Scholar 

  37. Chilvers MA, Rutman A, O'Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol. 2003;112(3):518–24.

    Article  PubMed  Google Scholar 

  38. Daniels ML, Noone PG. Genetics, diagnosis, and future treatment strategies for primary ciliary dyskinesia. Expert Opin Orphan Drugs. 2015;3(1):31–44.

    Article  PubMed  Google Scholar 

  39. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet. 1999;65(6):1508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002;30(2):143–4.

    Article  CAS  PubMed  Google Scholar 

  41. Francis RJ, Christopher A, Devine WA, Ostrowski L, Lo C. Congenital heart disease and the specification of left-right asymmetry. Am J Physiol Heart Circ Physiol. 2012;302(10):H2102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lucas JS, Adam EC, Goggin PM, Jackson CL, Powles-Glover N, Patel SH, et al. Static respiratory cilia associated with mutations in Dnahc11/DNAH11: a mouse model of PCD. Hum Mutat. 2012;33(3):495–503.

    Article  CAS  PubMed  Google Scholar 

  43. Tan SY, Rosenthal J, Zhao XQ, Francis RJ, Chatterjee B, Sabol SL, et al. Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J Clin Invest. 2007;117(12):3742–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med. 2013;188(8):913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lewis WR, Malarkey EB, Tritschler D, Bower R, Pasek RC, Porath JD, et al. Mutation of growth arrest specific 8 reveals a role in motile cilia function and human disease. PLoS Genet. 2016;12(7):e1006220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jeanson L, Thomas L, Copin B, Coste A, Sermet-Gaudelus I, Dastot-Le Moal F, et al. Mutations in GAS8, a gene encoding a nexin-dynein regulatory complex subunit, cause primary ciliary dyskinesia with axonemal disorganization. Hum Mutat. 2016;37(8):776–85.

    Article  CAS  PubMed  Google Scholar 

  47. Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet. 2013;45(3):262–8.

    Article  CAS  PubMed  Google Scholar 

  48. Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, Ta-shma A, et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 2013;8(8):e72299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fedick AM, Jalas C, Treff NR, Knowles MR, Zariwala MA. Carrier frequencies of eleven mutations in eight genes associated with primary ciliary dyskinesia in the Ashkenazi Jewish population. Mol Genet Genomic Med. 2015;3(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  50. Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med. 2014;189(6):707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kobbernagel HE, Buchvald FF, Haarman EG, Casaulta C, Collins SA, Hogg C, et al. Study protocol, rationale and recruitment in a European multi-centre randomized controlled trial to determine the efficacy and safety of azithromycin maintenance therapy for 6 months in primary ciliary dyskinesia. BMC Pulm Med. 2016;16(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shapiro AJ, Davis SD, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, et al. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest. 2014;146(5):1176–86.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Botto LD, Lin AE, Riehle-Colarusso T, Malik S, Correa A, National birth defects prevention Study. Seeking causes: classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res A Clin Mol Teratol. 2007;79(10):714–27.

    Article  CAS  PubMed  Google Scholar 

  54. Evans WN, Acherman RJ, Restrepo H. Heterotaxy in southern Nevada: prenatal detection and epidemiology. Pediatr Cardiol. 2015;36(5):930–4.

    Article  PubMed  Google Scholar 

  55. Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation. 2007;115(22):2814–21.

    Article  PubMed  Google Scholar 

  56. Sutherland MJ, Ware SM. Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet. 2009;151C(4):307–17.

    Article  CAS  PubMed  Google Scholar 

  57. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8(11):880–93.

    Article  CAS  PubMed  Google Scholar 

  58. Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. Cilia and coordination of signaling networks during heart development. Organogenesis. 2014;10(1):108–25.

    Article  PubMed  Google Scholar 

  59. Pennekamp P, Menchen T, Dworniczak B, Hamada H. Situs inversus and ciliary abnormalities: 20 years later, what is the connection? Cilia. 2015;4(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 1998;95(6):829–37.

    Article  CAS  PubMed  Google Scholar 

  61. Supp DM, Witte DP, Potter SS, Brueckner M. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature. 1997;389(6654):963–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu L, Belmont JW, Ware SM. Genetics of human heterotaxias. Eur J Hum Genet. 2006;14(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  63. McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell. 2003;114(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  64. Yuksel MA, Mammadov Z, Sofiyeva N, Alici Davutoglu E, Temel Yuksel I, Madazli R. An unusual case of Meckel-Gruber syndrome (MKS) associated with visceroatrial heterotaxy and facial anomalies. J Obstet Gynaecol. 2016;36(4):524–5.

    Article  PubMed  Google Scholar 

  65. Tanaka Y, Okada Y, Hirokawa N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature. 2005;435(7039):172–7.

    Article  CAS  PubMed  Google Scholar 

  66. Deng H, Xia H, Deng S. Genetic basis of human left-right asymmetry disorders. Expert Rev Mol Med. 2015;16:e19.

    Article  PubMed  CAS  Google Scholar 

  67. Bamford RN, Roessler E, Burdine RD, Saplakoglu U, dela Cruz J, Splitt M, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000;26(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  68. Ma L, Selamet Tierney ES, Lee T, Lanzano P, Chung WK. Mutations in ZIC3 and ACVR2B are a common cause of heterotaxy and associated cardiovascular anomalies. Cardiol Young. 2012;22(2):194–201.

    Article  PubMed  Google Scholar 

  69. Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18(5):861–71.

    Article  CAS  PubMed  Google Scholar 

  70. Kinzel D, Boldt K, Davis EE, Burtscher I, Trumbach D, Diplas B, et al. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell. 2010;19(1):66–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. De Luca A, Sarkozy A, Consoli F, Ferese R, Guida V, Dentici ML, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart. 2010;96(9):673–7.

    Article  PubMed  Google Scholar 

  73. Yang XF, XY W, Li M, Li YG, Dai JT, Bai YH, et al. Mutation analysis of Cited2 in patients with congenital heart disease. Zhonghua Er Ke Za Zhi. 2010;48(4):293–6.

    PubMed  Google Scholar 

  74. Kosaki K, Bassi MT, Kosaki R, Lewin M, Belmont J, Schauer G, et al. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet. 1999;64(3):712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Watanabe Y, Benson DW, Yano S, Akagi T, Yoshino M, Murray JC. Two novel frameshift mutations in NKX2.5 result in novel features including visceral inversus and sinus venosus type ASD. J Med Genet. 2002;39(11):807–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A. 2005;135(1):47–52.

    Article  PubMed  Google Scholar 

  77. Robinson SW, Morris CD, Goldmuntz E, Reller MD, Jones MA, Steiner RD, et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet. 2003;72(4):1047–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perles Z, Cinnamon Y, Ta-Shma A, Shaag A, Einbinder T, Rein AJ, et al. A human laterality disorder associated with recessive CCDC11 mutation. J Med Genet. 2012;49(6):386–90.

    Article  CAS  PubMed  Google Scholar 

  79. French VM, van de Laar IM, Wessels MW, Rohe C, Roos-Hesselink JW, Wang G, et al. NPHP4 variants are associated with pleiotropic heart malformations. Circ Res. 2012;110(12):1564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaasinen E, Aittomaki K, Eronen M, Vahteristo P, Karhu A, Mecklin JP, et al. Recessively inherited right atrial isomerism caused by mutations in growth/differentiation factor 1 (GDF1). Hum Mol Genet. 2010;19(14):2747–53.

    Article  CAS  PubMed  Google Scholar 

  81. Iida A, Emi M, Matsuoka R, Hiratsuka E, Okui K, Ohashi H, et al. Identification of a gene disrupted by inv(11)(q13.5;q25) in a patient with left-right axis malformation. Hum Genet. 2000;106(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  82. Kato R, Yamada Y, Niikawa N. De novo balanced translocation (6;18)(q21;q21.3 or q22) [corrected] in a patient with heterotaxia. Am J Med Genet. 1996;66(2):184–6.

    Article  CAS  PubMed  Google Scholar 

  83. Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A, Penman-Splitt M, et al. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet. 1997;17(3):305–8.

    Article  CAS  PubMed  Google Scholar 

  84. Barker AR, Thomas R, Dawe HR. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis. 2014;10(1):96–107.

    Article  PubMed  Google Scholar 

  85. Garrod AS, Zahid M, Tian X, Francis RJ, Khalifa O, Devine W, et al. Airway ciliary dysfunction and sinopulmonary symptoms in patients with congenital heart disease. Ann Am Thorac Soc. 2014;11(9):1426–32.

    Article  PubMed  Google Scholar 

  86. Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015;521(7553):520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Swisher M, Jonas R, Tian X, Lee ES, Lo CW, Leatherbury L. Increased postoperative and respiratory complications in patients with congenital heart disease associated with heterotaxy. J Thorac Cardiovasc Surg. 2011;141(3):637–44. 44 e1-3

    Article  PubMed  Google Scholar 

  88. Nakhleh N, Francis R, Giese RA, Tian X, Li Y, Zariwala MA, et al. High prevalence of respiratory ciliary dysfunction in congenital heart disease patients with heterotaxy. Circulation. 2012;125(18):2232–42.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shapiro AJ, Tolleson-Rinehart S, Zariwala MA, Knowles MR, Leigh MW. The prevalence of clinical features associated with primary ciliary dyskinesia in a heterotaxy population: results of a web-based survey. Cardiol Young. 2015;25(4):752–9.

    Article  PubMed  Google Scholar 

  90. Ibanez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet. 2002;11(6):715–21.

    Article  CAS  PubMed  Google Scholar 

  91. Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res. 2013;91(9):1117–32.

    Article  CAS  PubMed  Google Scholar 

  92. Vieira JP, Lopes P, Silva R. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol. 2012;27(7):938–41.

    Article  PubMed  Google Scholar 

  93. Wessels MW, den Hollander NS, Willems PJ. Mild fetal cerebral ventriculomegaly as a prenatal sonographic marker for Kartagener syndrome. Prenat Diagn. 2003;23(3):239–42.

    Article  PubMed  Google Scholar 

  94. Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat. 2010;31(10):1097–108.

    Article  CAS  PubMed  Google Scholar 

  95. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  96. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol. 2002;12(11):R378–80.

    Article  CAS  PubMed  Google Scholar 

  97. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002;13(10):2508–16.

    Article  CAS  PubMed  Google Scholar 

  98. Moua T, Zand L, Hartman RP, Hartman TE, Qin D, Peikert T, et al. Radiologic and clinical bronchiectasis associated with autosomal dominant polycystic kidney disease. PLoS One. 2014;9(4):e93674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Sayarlioglu H, Dagli CE, Dogan E, Sayarlioglu M, Koksal N. Kartagener’s syndrome and polycystic kidney disease. NDT Plus. 2009;2(2):189–90.

    PubMed  PubMed Central  Google Scholar 

  100. Onoe T, Konoshita T, Tsuneyama K, Hamano R, Mizushima I, Kakuchi Y, et al. Situs inversus and cystic kidney disease: Two adult patients with this Heterogeneous syndrome. Am J Case Rep. 2013;14:20–5.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Otto EA, Schermer B, Obara T, O'Toole JF, Hiller KS, Mueller AM, et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet. 2003;34(4):413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu Q, Zhang Q, Pierce EA. Photoreceptor sensory cilia and inherited retinal degeneration. Adv Exp Med Biol. 2010;664:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bukowy-Bieryllo Z, Zietkiewicz E, Loges NT, Wittmer M, Geremek M, Olbrich H, et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr Pulmonol. 2013;48(4):352–63.

    Article  PubMed  Google Scholar 

  104. Shah AS, Farmen SL, Moninger TO, Businga TR, Andrews MP, Bugge K, et al. Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. Proc Natl Acad Sci U S A. 2008;105(9):3380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Papon JF, Perrault I, Coste A, Louis B, Gerard X, Hanein S, et al. Abnormal respiratory cilia in non-syndromic Leber congenital amaurosis with CEP290 mutations. J Med Genet. 2010;47(12):829–34.

    Article  CAS  PubMed  Google Scholar 

  106. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11(7):473–87.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007;69:423–50.

    Article  CAS  PubMed  Google Scholar 

  108. Zariwala MA, Leigh MW Primary ciliary dyskinesia. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [Internet]. Updated 3rd Sept 2015. Seattle: University of Washington; 2007. p. 1993–2016.

    Google Scholar 

  109. Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield VC, Aviram M, et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet. 2011;88(5):599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, et al. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2013;92(1):99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 2013;92(1):88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, et al. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet. 2014;95(3):257–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Duriez B, Duquesnoy P, Escudier E, Bridoux AM, Escalier D, Rayet I, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A. 2007;104(9):3336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet. 2013;93(2):357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Onoufriadis A, Shoemark A, Munye MM, James CT, Schmidts M, Patel M, et al. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J Med Genet. 2014;51(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  116. Wallmeier J, Shiratori H, Dougherty GW, Edelbusch C, Hjeij R, Loges NT, et al. TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am J Hum Genet. 2016;99(2):460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012;44(4):381–9. S1-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, Hellman N, et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet. 2013;93(4):672–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012;44(6):714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, Van Arendonk LG, et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2012;91(4):685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet. 2012;91(5):958–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Horani A, Ferkol TW, Shoseyov D, Wasserman MG, Oren YS, Kerem B, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8(3):e59436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet. 2013;45(9):995–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93(2):336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013;93(2):346–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet. 2013;93(4):711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Blanchon S, Legendre M, Copin B, Duquesnoy P, Montantin G, Kott E, et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J Med Genet. 2012;49(6):410–6.

    Article  CAS  PubMed  Google Scholar 

  128. Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet. 2011;43(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  129. Harrison MJ, Shapiro AJ, Kennedy MP. Congenital heart disease and primary ciliary dyskinesia. Paediatr Respir Rev. 2016;18:25–32.

    PubMed  Google Scholar 

  130. Watson CM, Crinnion LA, Morgan JE, Harrison SM, Diggle CP, Adlard J, et al. Robust diagnostic genetic testing using solution capture enrichment and a novel variant-filtering interface. Hum Mutat. 2014;35(4):434–41.

    Article  CAS  PubMed  Google Scholar 

  131. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet. 2009;84(2):197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Daniels ML, Leigh MW, Davis SD, Armstrong MC, Carson JL, Hazucha M, et al. Founder mutation in RSPH4A identified in patients of Hispanic descent with primary ciliary dyskinesia. Hum Mutat. 2013;34(10):1352–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zietkiewicz E, Bukowy-Bieryllo Z, Voelkel K, Klimek B, Dmenska H, Pogorzelski A, et al. Mutations in radial spoke head genes and ultrastructural cilia defects in East-European cohort of primary ciliary dyskinesia patients. PLoS One. 2012;7(3):e33667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Onoufriadis A, Shoemark A, Schmidts M, Patel M, Jimenez G, Liu H, et al. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet. 2014;23(13):3362–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Frommer A, Hjeij R, Loges NT, Edelbusch C, Jahnke C, Raidt J, et al. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am J Respir Cell Mol Biol. 2015;53(4):563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reish O, Slatkin M, Chapman-Shimshoni D, Elizur A, Chioza B, Castleman V, et al. Founder mutation(s) in the RSPH9 gene leading to primary ciliary dyskinesia in two inbred Bedouin families. Ann Hum Genet. 2010;74(2):117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet. 2013;93(3):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jeanson L, Copin B, Papon JF, Dastot-Le Moal F, Duquesnoy P, Montantin G, et al. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am J Hum Genet. 2015;97(1):153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012;91(4):672–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun. 2014;5:4418.

    Article  CAS  PubMed  Google Scholar 

  141. Wallmeier J, Al-Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet. 2014;46(6):646–51.

    Article  CAS  PubMed  Google Scholar 

  142. El Khouri E, Thomas L, Jeanson L, Bequignon E, Vallette B, Duquesnoy P, et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet. 2016;99(2):489–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Horani A, Ferkol TW. Primary ciliary dyskinesia and associated sensory ciliopathies. Expert Rev Respir Med. 2016;10(5):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yen HJ, Tayeh MK, Mullins RF, Stone EM, Sheffield VC, Slusarski DC. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Hum Mol Genet. 2006;15(5):667–77.

    Article  CAS  PubMed  Google Scholar 

  145. Simms RJ, Hynes AM, Eley L, Inglis D, Chaudhry B, Dawe HR, et al. Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development. Cell Mol Life Sci. 2012;69(6):993–1009.

    Article  CAS  PubMed  Google Scholar 

  146. Hurd T, Zhou W, Jenkins P, Liu CJ, Swaroop A, Khanna H, et al. The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development. Hum Mol Genet. 2010;19(22):4330–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ferrante MI, Romio L, Castro S, Collins JE, Goulding DA, Stemple DL, et al. Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet. 2009;18(2):289–303.

    Article  CAS  PubMed  Google Scholar 

  148. Ozanturk A, Marshall JD, Collin GB, Duzenli S, Marshall RP, Candan S, et al. The phenotypic and molecular genetic spectrum of Alstrom syndrome in 44 Turkish kindreds and a literature review of Alstrom syndrome in Turkey. J Hum Genet. 2015;60(1):51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Saba M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Saba, T.G., Shapiro, A.J. (2018). Pulmonary Complications of Heterotaxy Syndromes. In: Koumbourlis, A., Nevin, M. (eds) Pulmonary Complications of Non-Pulmonary Pediatric Disorders. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-69620-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69620-1_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-69619-5

  • Online ISBN: 978-3-319-69620-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics