Skip to main content
Log in

Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Joubert syndrome and related diseases (JSRD) are cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy, and nephronophthisis (a cystic kidney disease). Mutations in AHI1 are the most common genetic cause of JSRD, with developmental hindbrain anomalies and retinal degeneration being prominent features. We demonstrate that Ahi1, a WD40 domain-containing protein, is highly conserved throughout evolution and its expression associates with ciliated organisms. In zebrafish ahi1 morphants, the phenotypic spectrum of JSRD is modeled, with embryos showing brain, eye, and ear abnormalities, together with renal cysts and cloacal dilatation. Following ahi1 knockdown in zebrafish, we demonstrate loss of cilia at Kupffer’s vesicle and subsequently defects in cardiac left–right asymmetry. Finally, using siRNA in renal epithelial cells we demonstrate a role for Ahi1 in both ciliogenesis and cell–cell junction formation. These data support a role for Ahi1 in epithelial cell organization and ciliary formation and explain the ciliopathy phenotype of AHI1 mutations in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maria BL, Hoang KB, Tusa RJ, Mancuso AA, Hamed LM, Quisling RG, Hove MT, Fennell EB, Booth-Jones M, Ringdahl DM, Yachnis AT, Creel G, Frerking B (1997) “Joubert syndrome” revisited: key ocular motor signs with magnetic resonance imaging correlation. J Child Neurol 12:423–430

    Article  PubMed  CAS  Google Scholar 

  2. Lambert SR, Kriss A, Gresty M, Benton S, Taylor D (1989) Joubert syndrome. Arch Ophthalmol 107:709–713

    Article  PubMed  CAS  Google Scholar 

  3. Sturm V, Leiba H, Menke MN, Valente EM, Poretti A, Landau K, Boltshauser E (2010) Ophthalmological findings in Joubert syndrome. Eye (Lond) 24:222–225

    Article  CAS  Google Scholar 

  4. Utsch B, Sayer JA, Attanasio M, Pereira RR, Eccles M, Hennies HC, Otto EA, Hildebrandt F (2006) Identification of the first ahi1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatr Nephrol 21:32–35

    Article  PubMed  Google Scholar 

  5. Delous M, Baala L, Salomon R, Laclef C, Vierkotten J, Tory K, Golzio C, Lacoste T, Besse L, Ozilou C, Moutkine I, Hellman NE, Anselme I, Silbermann F, Vesque C, Gerhardt C, Rattenberry E, Wolf MT, Gubler MC, Martinovic J, Encha-Razavi F, Boddaert N, Gonzales M, Macher MA, Nivet H, Champion G, Bertheleme JP, Niaudet P, McDonald F, Hildebrandt F, Johnson CA, Vekemans M, Antignac C, Ruther U, Schneider-Maunoury S, Attie-Bitach T, Saunier S (2007) The ciliary gene rpgrip1l is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type b) and Meckel syndrome. Nat Genet 39:875–881

    Article  PubMed  CAS  Google Scholar 

  6. Parisi MA, Doherty D, Chance PF, Glass IA (2007) Joubert syndrome (and related disorders) (omim 213300). Eur J Hum Genet 15:511–521

    Article  PubMed  CAS  Google Scholar 

  7. Brancati F, Dallapiccola B, Valente EM (2010) Joubert syndrome and related disorders. Orphanet J Rare Dis 5:20

    Article  PubMed  Google Scholar 

  8. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG (2009) Mutations in inpp5e, encoding inositol polyphosphate-5-phosphatase e, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41:1032–1036

    Article  PubMed  CAS  Google Scholar 

  9. Edvardson S, Shaag A, Zenvirt S, Erlich Y, Hannon GJ, Shanske AL, Gomori JM, Ekstein J, Elpeleg O (2010) Joubert syndrome 2 (jbts2) in Ashkenazi Jews is associated with a tmem216 mutation. Am J Hum Genet 86:93–97

    Article  PubMed  CAS  Google Scholar 

  10. Ferland RJ, Eyaid W, Collura RV, Tully LD, Hill RS, Al-Nouri D, Al-Rumayyan A, Topcu M, Gascon G, Bodell A, Shugart YY, Ruvolo M, Walsh CA (2004) Abnormal cerebellar development and axonal decussation due to mutations in ahi1 in Joubert syndrome. Nat Genet 36:1008–1013

    Article  PubMed  CAS  Google Scholar 

  11. Parisi MA, Bennett CL, Eckert ML, Dobyns WB, Gleeson JG, Shaw DW, McDonald R, Eddy A, Chance PF, Glass IA (2004) The nphp1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet 75:82–91

    Article  PubMed  CAS  Google Scholar 

  12. Sayer JA, Otto EA, O’Toole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, Utsch B, Khanna H, Liu Y, Drummond I, Kawakami I, Kusakabe T, Tsuda M, Ma L, Lee H, Larson RG, Allen SJ, Wilkinson CJ, Nigg EA, Shou C, Lillo C, Williams DS, Hoppe B, Kemper MJ, Neuhaus T, Parisi MA, Glass IA, Petry M, Kispert A, Gloy J, Ganner A, Walz G, Zhu X, Goldman D, Nurnberg P, Swaroop A, Leroux MR, Hildebrandt F (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor atf4. Nat Genet 38:674–681

    Article  PubMed  CAS  Google Scholar 

  13. Brancati F, Barrano G, Silhavy JL, Marsh SE, Travaglini L, Bielas SL, Amorini M, Zablocka D, Kayserili H, Al-Gazali L, Bertini E, Boltshauser E, D’Hooghe M, Fazzi E, Fenerci EY, Hennekam RC, Kiss A, Lees MM, Marco E, Phadke SR, Rigoli L, Romano S, Salpietro CD, Sherr EH, Signorini S, Stromme P, Stuart B, Sztriha L, Viskochil DH, Yuksel A, Dallapiccola B, Valente EM, Gleeson JG (2007) Cep290 mutations are frequently identified in the oculo-renal form of Joubert syndrome-related disorders. Am J Hum Genet 81:104–113

    Article  PubMed  CAS  Google Scholar 

  14. Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, Fazzi E, Signorini S, Louie CM, Bellacchio E, Bertini E, Dallapiccola B, Gleeson JG (2006) Mutations in cep290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 38:623–625

    Article  PubMed  CAS  Google Scholar 

  15. Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN, Whelan S, Morgan NV, Goranson E, Gissen P, Lilliquist S, Aligianis IA, Ward CJ, Pasha S, Punyashthiti R, Malik Sharif S, Batman PA, Bennett CP, Woods CG, McKeown C, Bucourt M, Miller CA, Cox P, Algazali L, Trembath RC, Torres VE, Attie-Bitach T, Kelly DA, Maher ER, Gattone VH II, Harris PC, Johnson CA (2006) The transmembrane protein meckelin (mks3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet 38:191–196

    Article  PubMed  CAS  Google Scholar 

  16. Baala L, Audollent S, Martinovic J, Ozilou C, Babron MC, Sivanandamoorthy S, Saunier S, Salomon R, Gonzales M, Rattenberry E, Esculpavit C, Toutain A, Moraine C, Parent P, Marcorelles P, Dauge MC, Roume J, Le Merrer M, Meiner V, Meir K, Menez F, Beaufrere AM, Francannet C, Tantau J, Sinico M, Dumez Y, MacDonald F, Munnich A, Lyonnet S, Gubler MC, Genin E, Johnson CA, Vekemans M, Encha-Razavi F, Attie-Bitach T (2007) Pleiotropic effects of cep290 (nphp6) mutations extend to Meckel syndrome. Am J Hum Genet 81:170–179

    Article  PubMed  CAS  Google Scholar 

  17. Cantagrel V, Silhavy JL, Bielas SL, Swistun D, Marsh SE, Bertrand JY, Audollent S, Attie-Bitach T, Holden KR, Dobyns WB, Traver D, Al-Gazali L, Ali BR, Lindner TH, Caspary T, Otto EA, Hildebrandt F, Glass IA, Logan CV, Johnson CA, Bennett C, Brancati F, Valente EM, Woods CG, Gleeson JG (2008) Mutations in the cilia gene arl13b lead to the classical form of Joubert syndrome. Am J Hum Genet 83:170–179

    Article  PubMed  CAS  Google Scholar 

  18. Gorden NT, Arts HH, Parisi MA, Coene KL, Letteboer SJ, van Beersum SE, Mans DA, Hikida A, Eckert M, Knutzen D, Alswaid AF, Ozyurek H, Dibooglu S, Otto EA, Liu Y, Davis EE, Hutter CM, Bammler TK, Farin FM, Dorschner M, Topcu M, Zackai EH, Rosenthal P, Owens KN, Katsanis N, Vincent JB, Hildebrandt F, Rubel EW, Raible DW, Knoers NV, Chance PF, Roepman R, Moens CB, Glass IA, Doherty D (2008) Cc2d2a is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein cep290. Am J Hum Genet 83:559–571

    Article  PubMed  CAS  Google Scholar 

  19. Coene KL, Roepman R, Doherty D, Afroze B, Kroes HY, Letteboer SJ, Ngu LH, Budny B, van Wijk E, Gorden NT, Azhimi M, Thauvin-Robinet C, Veltman JA, Boink M, Kleefstra T, Cremers FP, van Bokhoven H, de Brouwer AP (2009) Ofd1 is mutated in x-linked Joubert syndrome and interacts with lca5-encoded lebercilin. Am J Hum Genet 85:465–481

    Article  PubMed  CAS  Google Scholar 

  20. Hildebrandt F, Attanasio M, Otto E (2009) Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol 20:23–35

    Article  PubMed  CAS  Google Scholar 

  21. Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19:R526–R535

    Article  PubMed  CAS  Google Scholar 

  22. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O’Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the nphp-jbts-mks protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528

    Article  PubMed  CAS  Google Scholar 

  23. Dixon-Salazar T, Silhavy JL, Marsh SE, Louie CM, Scott LC, Gururaj A, Al-Gazali L, Al-Tawari AA, Kayserili H, Sztriha L, Gleeson JG (2004) Mutations in the ahi1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am J Hum Genet 75:979–987

    Article  PubMed  CAS  Google Scholar 

  24. Valente EM, Brancati F, Silhavy JL, Castori M, Marsh SE, Barrano G, Bertini E, Boltshauser E, Zaki MS, Abdel-Aleem A, Abdel-Salam GM, Bellacchio E, Battini R, Cruse RP, Dobyns WB, Krishnamoorthy KS, Lagier-Tourenne C, Magee A, Pascual-Castroviejo I, Salpietro CD, Sarco D, Dallapiccola B, Gleeson JG (2006) Ahi1 gene mutations cause specific forms of Joubert syndrome-related disorders. Ann Neurol 59:527–534

    Article  PubMed  CAS  Google Scholar 

  25. Parisi MA, Doherty D, Eckert ML, Shaw DW, Ozyurek H, Aysun S, Giray O, Al Swaid A, Al Shahwan S, Dohayan N, Bakhsh E, Indridason OS, Dobyns WB, Bennett CL, Chance PF, Glass IA (2006) Ahi1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet 43:334–339

    Article  PubMed  CAS  Google Scholar 

  26. Louie CM, Caridi G, Lopes VS, Brancati F, Kispert A, Lancaster MA, Schlossman AM, Otto EA, Leitges M, Grone HJ, Lopez I, Gudiseva HV, O’Toole JF, Vallespin E, Ayyagari R, Ayuso C, Cremers FP, den Hollander AI, Koenekoop RK, Dallapiccola B, Ghiggeri GM, Hildebrandt F, Valente EM, Williams DS, Gleeson JG (2010) Ahi1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 42:175–180

    Article  PubMed  CAS  Google Scholar 

  27. Eley L, Gabrielides C, Adams M, Johnson CA, Hildebrandt F, Sayer JA (2008) Jouberin localizes to collecting ducts and interacts with nephrocystin-1. Kidney Int 74:1139–1149

    Article  PubMed  CAS  Google Scholar 

  28. Tory K, Lacoste T, Burglen L, Moriniere V, Boddaert N, Macher MA, Llanas B, Nivet H, Bensman A, Niaudet P, Antignac C, Salomon R, Saunier S (2007) High nphp1 and nphp6 mutation rate in patients with Joubert syndrome and nephronophthisis: Potential epistatic effect of nphp6 and ahi1 mutations in patients with nphp1 mutations. J Am Soc Nephrol 18:1566–1575

    Article  PubMed  CAS  Google Scholar 

  29. Doering JE, Kane K, Hsiao YC, Yao C, Shi B, Slowik AD, Dhagat B, Scott DD, Ault JG, Page-McCaw PS, Ferland RJ (2008) Species differences in the expression of ahi1, a protein implicated in the neurodevelopmental disorder Joubert syndrome, with preferential accumulation to stigmoid bodies. J Comp Neurol 511:238–256

    Article  PubMed  CAS  Google Scholar 

  30. Yen HJ, Tayeh MK, Mullins RF, Stone EM, Sheffield VC, Slusarski DC (2006) Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Hum Mol Genet 15:667–677

    Article  PubMed  CAS  Google Scholar 

  31. Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132:1247–1260

    Article  PubMed  CAS  Google Scholar 

  32. Ahmad N, Long S, Rebagliati M (2004) A southpaw joins the roster: the role of the zebrafish nodal-related gene southpaw in cardiac lr asymmetry. Trends Cardiovasc Med 14:43–49

    Article  PubMed  CAS  Google Scholar 

  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  34. Schultz J, Milpetz F, Bork P, Ponting CP (1998) Smart, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  35. Letunic I, Doerks T, Bork P (2009) Smart 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232

    Article  PubMed  CAS  Google Scholar 

  36. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  Google Scholar 

  37. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  38. Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ (2003) Germ-line transmission of a myocardium-specific gfp transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn 228:30–40

    Article  PubMed  CAS  Google Scholar 

  39. Amack JD, Wang X, Yost HJ (2007) Two t-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer’s vesicle in zebrafish. Dev Biol 310:196–210

    Article  PubMed  CAS  Google Scholar 

  40. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, Hibi M, Suzuki T (2004) The cerberus/dan-family protein charon is a negative regulator of nodal signaling during left-right patterning in zebrafish. Development 131:1741–1753

    Article  PubMed  CAS  Google Scholar 

  42. Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444

    Article  PubMed  CAS  Google Scholar 

  43. Yelon D, Horne SA, Stainier DY (1999) Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol 214:23–37

    Article  PubMed  CAS  Google Scholar 

  44. Malicki J, Neuhauss SC, Schier AF, Solnica-Krezel L, Stemple DL, Stainier DY, Abdelilah S, Zwartkruis F, Rangini Z, Driever W (1996) Mutations affecting development of the zebrafish retina. Development 123:263–273

    PubMed  CAS  Google Scholar 

  45. Woods A, Sherwin T, Sasse R, MacRae TH, Baines AJ, Gull K (1989) Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci 93(Pt 3):491–500

    PubMed  Google Scholar 

  46. Dawe HR, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL, Blair-Reid S, Sriram N, Katsanis N, Attie-Bitach T, Afford SC, Copp AJ, Kelly DA, Gull K, Johnson CA (2007) The Meckel-Gruber syndrome proteins mks1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 16:173–186

    Article  PubMed  CAS  Google Scholar 

  47. Shi Z, Liang N, Xu W, Li K, Sheng G, Liu J, Xu A, Li XJ, Wu D (2009) Expression, purification, crystallization and preliminary x-ray crystallographic analysis of the sh3 domain of human ahi1. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:361–363

    Article  PubMed  Google Scholar 

  48. Zhou W, Song P (2006) Molecular cloning of a novel gene zahi-1 and its expression analysis during zebrafish gametogenesis. Mol Biol Rep 33:111–116

    Article  PubMed  CAS  Google Scholar 

  49. Wang G, Cadwallader AB, Jang DS, Tsang M, Yost HJ, Amack JD (2011) The rho kinase rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development 138:45–54

    Article  PubMed  CAS  Google Scholar 

  50. Chen JN, van Eeden FJ, Warren KS, Chin A, Nusslein-Volhard C, Haffter P, Fishman MC (1997) Left-right pattern of cardiac bmp4 may drive asymmetry of the heart in zebrafish. Development 124:4373–4382

    PubMed  CAS  Google Scholar 

  51. Chin AJ, Tsang M, Weinberg ES (2000) Heart and gut chiralities are controlled independently from initial heart position in the developing zebrafish. Dev Biol 227:403–421

    Article  PubMed  CAS  Google Scholar 

  52. Matter K, Balda MS (2003) Functional analysis of tight junctions. Methods 30:228–234

    Article  PubMed  CAS  Google Scholar 

  53. Zegers MM, O’Brien LE, Yu W, Datta A, Mostov KE (2003) Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol 13:169–176

    Article  PubMed  CAS  Google Scholar 

  54. Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, Lewis RA, Green JS, Parfrey PS, Leroux MR, Davidson WS, Beales PL, Guay-Woodford LM, Yoder BK, Stormo GD, Katsanis N, Dutcher SK (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the bbs5 human disease gene. Cell 117:541–552

    Article  PubMed  CAS  Google Scholar 

  55. Keller LC, Romijn EP, Zamora I, Yates JR III, Marshall WF (2005) Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 15:1090–1098

    Article  PubMed  CAS  Google Scholar 

  56. Liu Q, Tan G, Levenkova N, Li T, Pugh EN Jr, Rux JJ, Speicher DW, Pierce EA (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6:1299–1317

    Article  PubMed  CAS  Google Scholar 

  57. Hsiao YC, Tong ZJ, Westfall JE, Ault JG, Page-McCaw PS, Ferland RJ (2009) Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for rab8a localization, ciliogenesis and vesicle trafficking. Hum Mol Genet 18:3926–3941

    Article  PubMed  CAS  Google Scholar 

  58. Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T, Subramaniam S, Zuker CS (2004) Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117:527–539

    Article  PubMed  CAS  Google Scholar 

  59. Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227

    Article  PubMed  CAS  Google Scholar 

  60. Sieburth JM, Johnson PW, Hargreaves PE (1988) Ultrastructure and ecology of Aureococcus anophagefferens gen et sp. nov. (Chrysophyceae): the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. J Phycol 24:416–425

    Article  Google Scholar 

  61. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis nc64a genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  PubMed  CAS  Google Scholar 

  62. Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123:1407–1413

    Article  PubMed  CAS  Google Scholar 

  63. Elias M, Archibald JM (2009) The rjl family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus. Gene 442:63–72

    Article  PubMed  CAS  Google Scholar 

  64. Woodland HR, Fry AM (2008) Pix proteins and the evolution of centrioles. PLoS One 3:e3778

    Article  PubMed  Google Scholar 

  65. Jensen KG, Moestrup O, Schmid AMM (2003) Ultrastructure of the male gametes from two centric diatoms, Chaetoceros laciniosus and Coscinodiscus wailesii (Bacillariophyceae). Phycologia 42:98–105

    Article  Google Scholar 

  66. Sorokin S (1962) Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15:363–377

    Article  PubMed  CAS  Google Scholar 

  67. Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A (2010) The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123:1785–1795

    Article  PubMed  CAS  Google Scholar 

  68. Baldari CT, Rosenbaum J (2010) Intraflagellar transport: it’s not just for cilia anymore. Curr Opin Cell Biol 22:75–80

    Article  PubMed  CAS  Google Scholar 

  69. Tsiokas L, Kim S, Ong EC (2007) Cell biology of polycystin-2. Cell Signal 19:444–453

    Article  PubMed  CAS  Google Scholar 

  70. Yachnis AT, Rorke LB (1999) Neuropathology of Joubert syndrome. J Child Neurol 14:655–659 discussion 669-672

    Article  PubMed  CAS  Google Scholar 

  71. Yachnis AT, Rorke LB (1999) Cerebellar and brainstem development: an overview in relation to Joubert syndrome. J Child Neurol 14:570–573

    Article  PubMed  CAS  Google Scholar 

  72. Sheng G, Xu X, Lin YF, Wang CE, Rong J, Cheng D, Peng J, Jiang X, Li SH, Li XJ (2008) Huntingtin-associated protein 1 interacts with ahi1 to regulate cerebellar and brainstem development in mice. J Clin Invest 118:2785–2795

    Article  PubMed  CAS  Google Scholar 

  73. Wingert RA, Davidson AJ (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73:1120–1127

    Article  PubMed  CAS  Google Scholar 

  74. Simms RJ, Eley L, Sayer JA (2009) Nephronophthisis. Eur J Hum Genet 17:406–416

    Article  PubMed  CAS  Google Scholar 

  75. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, Johnson C, Irving M, Elcioglu N, Winey M, Tada M, Scambler PJ (2007) Ift80, which encodes a conserved intraflagellar transport protein, is mutated in jeune asphyxiating thoracic dystrophy. Nat Genet 39:727–729

    Article  PubMed  CAS  Google Scholar 

  76. Duldulao NA, Lee S, Sun Z (2009) Cilia localization is essential for in vivo functions of the Joubert syndrome protein arl13b/scorpion. Development 136:4033–4042

    Article  PubMed  CAS  Google Scholar 

  77. Kishimoto N, Cao Y, Park A, Sun Z (2008) Cystic kidney gene seahorse regulates cilia-mediated processes and wnt pathways. Dev Cell 14:954–961

    Article  PubMed  CAS  Google Scholar 

  78. Serluca FC, Xu B, Okabe N, Baker K, Lin SY, Sullivan-Brown J, Konieczkowski DJ, Jaffe KM, Bradner JM, Fishman MC, Burdine RD (2009) Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning. Development 136:1621–1631

    Article  PubMed  CAS  Google Scholar 

  79. Sullivan-Brown J, Schottenfeld J, Okabe N, Hostetter CL, Serluca FC, Thiberge SY, Burdine RD (2008) Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev Biol 314:261–275

    Article  PubMed  CAS  Google Scholar 

  80. Ferrante MI, Romio L, Castro S, Collins JE, Goulding DA, Stemple DL, Woolf AS, Wilson SW (2009) Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet 18:289–303

    Article  PubMed  CAS  Google Scholar 

  81. Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F (2003) Mutations in invs encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34:413–420

    Article  PubMed  CAS  Google Scholar 

  82. Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kranzlin B, Nurnberg G, Becker C, Grimm T, Girschick G, Lynch SA, Kelehan P, Senderek J, Neuhaus TJ, Stallmach T, Zentgraf H, Nurnberg P, Gretz N, Lo C, Lienkamp S, Schafer T, Walz G, Benzing T, Zerres K, Omran H (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82:959–970

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mike Shaw (University of Oxford) for assistance with scanning EM, David Studholme (University of Exeter) for assistance with bioinformatics, and Keith Gull (University of Oxford) for many helpful discussions. We are extremely grateful to Kidney Research UK and the Medical Research Council (Training Fellowship to RJS) and the Mason Medical Research Fellowship (for pump priming funding to RJS). We also acknowledge support from the Northern Counties Kidney Research Fund and Newcastle Hospitals Healthcare Charity (support for AMH), the Kids Kidney Research Fund (support for LE), the Beit Memorial Fellowships for Medical Research (to HRD), the EP Abraham Trust, and GlaxoSmithKline (Clinician Scientist Fellowship to JAS) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Sayer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2011_826_MOESM1_ESM.tif

Supplementary Figure 1. Ahi1 protein domains in man, mouse, and zebrafish. Domain structure of the Ahi1 proteins from human mouse and zebrafish. Human Ahi1 (alias Jouberin) is a 1,196-amino acid (aa) protein that contains a Src-homology 3 domain (SH3), six WD40 domains (WD40), and an N-terminal coiled-coil (CC) domain. The mouse Ahi1 is 1,047 aa protein that lacks the N-terminal CC domain and has seven WD40 domains. The zebrafish ahi1 is a 934-aa protein with the predicted protein domains conserved. (TIFF 620 kb)

18_2011_826_MOESM2_ESM.tif

Supplementary Figure 2. Negative and positive controls for whole mount zebrafish in situ hybridization experiments. Negative controls for in situ expression in the developing zebrafish: Whole-mount zebrafish embryos at (A) 12–14 hpf (6–10 somites), (B, C) 24 hpf, (D, E) 48 hpf, and (F) 72 hpf with omission of ahi1 antisense riboprobe. Whole-mount zebrafish embryos at (G) 12–14 hpf (6–10 somites), (H and I) 24 hpf with ahi1 sense riboprobe. Positive controls for in situ expression in the developing zebrafish: A shh riboprobe provided a positive control and confirms characteristic expression (J–L). shh is expressed in the notochord and neuroectoderm at 12–14 hpf (arrowed in J), distinctly in the diencephalon at 24 hpf (arrowed in K) and in the branchial arches at 48 hpf (arrowed in L). Scale bar = 100 μm. (TIFF 3946 kb)

18_2011_826_MOESM3_ESM.tif

Supplementary Figure 3. Disrupted retinal development in ahi1 morphants. Eye histology in uninjected WT control and ahi1 MO-injected embryos at 72–120 hpf. (A, B) Control embryos show normal retinal lamination with three cell layers (GL, INL, and ONL). (C, D) In ahi1 SPL8 MO-injected embryos there is a severe retinal phenotype, retinal lamination does not occur and distinction of the three layers (GL, INL, and ONL) is not possible. The retinal pigment epithelium (RPE, arrowhead) was present in the ahi1 morphants. (GL ganglion cell layer; INL inner nuclear layer; ONL outer nuclear layer). Scale bar = 50 μm. (TIFF 3873 kb)

18_2011_826_MOESM4_ESM.tif

Supplementary Figure 4. Quantification of abnormal phenotypes in ahi1 MO-injected embryos and dose-dependant mortality of ahi1 MO injection. Quantification of the frequency of abnormal phenotypes in ahi1 MO-injected embryos. None of the anomalies were noted in uninjected control embryos. (A) Percentage of abnormal phenotypes are shown as mean ± SEM following ahi1 ATG MO-injection of embryos (using 6-ng and 3-ng doses, total number of embryos injected = 303). (B) Percentage of abnormal phenotypes are shown as mean ± SEM following ahi1 SPL8 MO-injected (using 2-ng and 1-ng doses, total number of embryos injected = 1,044). (C) Dose-dependant effect on mortality at 24 hpf is shown as mean % ± SEM using a dose range of 1 to 6 ng of ahi1 SPL8 MO. (D) Quantification of rescue of combined phenotype following injection of ahi1 SPL8 MO (2-ng dose) with Ahi1 mRNA compared to ahi1 SPL8 MO alone. There was a significant degree of rescue to uninjected wild-type phenotype (*, p < 0.0001, Fisher’s exact test). (E) Quantification of rescue of each variant of phenotype following injection of ahi1 SPL8 MO (2-ng dose) with Ahi1 mRNA compared to ahi1 SPL8 MO alone. Comparing treatments for each phenotype there was a significant rescue of wild-type phenotype and a significant reduction in disease phenotypes (curly tail, cardiac edema, hydocephalus, renal cyst, and otic placode abnormality) following ahi1 MO + mRNA injection (*, p < 0.0001, Fisher’s exact test). (TIFF 1446 kb)

18_2011_826_MOESM5_ESM.tif

Supplementary Figure 5. Morphology of KV in ahi1 morphants is preserved. Light microscopy images of 8–10 somite stage embryos during development and following in situ hybridization using a probe directed toward charon demonstrate preserved KV in ahi1 morphants. Lateral (A) and dorsal view (B) of control embryos showing KV (arrow). (C) A charon in situ hybridization probe identifies KV in a control embryo (yolk sac removed). Lateral (D) and dorsal views (E) of ahi1 morphant showing KV is intact. (F) A charon in situ hybridization probe identifies KV in a morphant embryo (yolk sac removed). (TIFF 6693 kb)

18_2011_826_MOESM6_ESM.tif

Supplementary Figure 6. Analysis of Kupffer’s vesicle (KV) and cardiac looping phenotypes in ahi1 MO-injected embryos (A). Quantification of the frequency of KV phenotypes in ahi1 SPL8 MO-injected embryos compared to uninjected controls. There is a significant reduction in ciliated KV (*, p < 0.0001, Fisher’s exact test) following 1–2 ng ahi1 SPL8 MO injection. (B) Quantification of the frequency of cardiac looping phenotypes in ahi1 SPL8 MO-injected embryos compared to uninjected controls. There is a significant reduction in normal cardiac D-looping (*, p < 0.0001, Fisher’s exact test) following 2-ng ahi1 SPL8 MO injection. The majority of embryos show a reversal of cardiac asymmetry (L-looping). (TIFF 249 kb)

18_2011_826_MOESM7_ESM.tif

Supplementary Table 1. Distribution of Ahi1 proteins and cilium and centriole architecture across eukaryotes. A putative Ahi1 homologue is found in organisms that build both motile and sensory cilia, but only if a triplet centriole architecture is also present. Ultrastructural information was not available for all organisms included in this study. A ? denotes an unknown architecture or one where conflicting data have been reported. In most cases, architectures are in accordance with those described in Woodland & Fry [64]. (TIFF 1399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simms, R.J., Hynes, A.M., Eley, L. et al. Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development. Cell. Mol. Life Sci. 69, 993–1009 (2012). https://doi.org/10.1007/s00018-011-0826-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0826-z

Keywords

Navigation