Skip to main content

Electromechanical Models of Ferroelectric Materials

  • Chapter
  • First Online:
Ferroic Functional Materials

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 581))

  • 863 Accesses

Abstract

Models of the electromechanical behaviour of ferroelectric materials are reviewed. Starting from the constitutive relationships for piezoelectrics and estimates of the response of piezoelectric composites, the development of models is traced from the macro-scale through to the micro-scale. Derivations of models based on extensions of classical plasticity and crystal plasticity theory are given, following the literature, and example applications of these models are shown. The formation of domain patterns is discussed and minimum energy methods based on the concept of compatibility are used to derive typical domain patterns for tetragonal and rhombohedral ferroelectrics. Methods for modelling the evolution of domain patterns are described. Finally the outlook for future directions in modelling of ferroelectrics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arlt, G. (1990). Twinning in ferroelectric and ferroelastic ceramics: Stress relief. Journal of Materials Science, 25, 2655–2666.

    Article  Google Scholar 

  • Arlt, G., & Sasko, P. (1980). Domain configuration and equilibrium size of domains in BaTiO\(_3\) ceramics. Journal of Applied Physics, 51, 4956–4960.

    Article  Google Scholar 

  • Ball, J. M., & James, R. D. (1987). Fine phase mixtures as minimizers of energy. Archive for Rational Mechanics and Analysis, 11, 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Bassiouny, E., Ghaleb, A. F., & Maugin, G. A. (1988). Thermodynamical formulation for coupled electromechanical hysteresis effects 1. Basic equations. International Journal of Engineering Science, 26, 1279–1295.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, K. (1993). Comparison of the geometrically nonlinear and linear theories of martensitic transformtion. Continuum Mechanics and Thermodynamics, 5, 205–242.

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, K. (2003). Microstructure of Martensite, Why it Forms and How It Gives Rise to the Shape-memory Effect. New York: Oxford University Press.

    Google Scholar 

  • Bisegna, P., & Luciano, R. (1996). Variational bounds for the overall properties of piezoelectric composites. Journal of the Mechanics and Physics of Solids, 44, 583–602.

    Article  MathSciNet  MATH  Google Scholar 

  • Burcsu, E., Ravichandran, G., & Bhattacharya, K. (2004). Large electrostrictive actuation of barium titanate single crystals. Journal of the Mechanics and Physics of Solids, 52, 823–846.

    Article  Google Scholar 

  • Cocks, A. C. F., & McMeeking, R. M. (1999). A phenomenological constitutive law for the behaviour of ferroelectric ceramics. Ferroelectrics, 228, 219–228.

    Article  Google Scholar 

  • Dayal, K., & Bhattacharya, K. (2007). A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Materialia, 55, 1907–1917.

    Article  Google Scholar 

  • Devonshire, A. F. (1949). Theory of barium titanate 1. Philosophical Magazine, 40, 1040–1063.

    Article  Google Scholar 

  • Dunn, M. L., & Taya, M. (1993). Micromechanics predictions of the effective electroelastic mouli of piezoelectric composites. International Journal of Solids and Structures, 30, 161–175.

    Article  MATH  Google Scholar 

  • Eshelby, J. D. (1957). The detrmination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London A, 241, 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer, F. D., Svoboda, J., & Petryk, H. (2014). Thermodynamic extremal principles for irreversible processes in materials science. Acta Materialia, 67, 1–20.

    Article  Google Scholar 

  • Hall, D. A., Steuwer, A., Cherdhirunkorn, B., Withers, P., & Mori, T. (2005). Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics. Journal of the Mechanics and Physics of Solids, 53, 249–260.

    Article  MATH  Google Scholar 

  • Haug, A., Huber, J. E., Onck, P. R., & Van der Giessen, E. (2007). Multi-grain analysis versus self-consistent estimates of ferroelectric polycrystals. Journal of the Mechanics and Physics of Solids, 55, 648–665.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.

    Article  Google Scholar 

  • Hooton, J. A., & Merz, W. J. (1955). Etch patterns and ferroelectric domains in BaTiO\(_3\) single crystals. Physical Review, 98, 409–413.

    Article  Google Scholar 

  • Huber, J.E., & Cocks, A.C.F. (2008). A variational model of ferroelectric microstructure. In Proceedings of ASME SMASIS08, 28–30 October 2008. Ellicott City, MD, USA.

    Google Scholar 

  • Huber, J. E., & Fleck, N. A. (2001). Multi-axial electrical switching of a ferroelectric: Theory versus experiment. Journal of the Mechanics and Physics of Solids, 49, 785–811.

    Article  MATH  Google Scholar 

  • Huber, J. E., & Fleck, N. A. (2004). Ferroelectric switching: A micromechanics model versus measured behaviour. European Journal of Mechanics A-Solids, 23, 203–217.

    Article  MATH  Google Scholar 

  • Huber, J. E., Fleck, N. A., Landis, C. M., & McMeeking, R. M. (1999). A constitutive model for ferroelectric polycrystals. Journal of the Mechanics and Physics of Solids, 47, 1663–1697.

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang, S. C., Lynch, C. S., & McMeeking, R. M. (1995). Ferroelectric/ferroelastic interactons and a polarization switching model. Acta Metallurgica et Materialia, 43, 2073–2084.

    Article  Google Scholar 

  • James, R. D., & Hane, K. F. (2000). Martensitic transformations and shape-memory materials. Acta Materialia, 48, 197–222.

    Article  Google Scholar 

  • Jones, J. L., Slamovich, E. B., & Bowman, K. J. (2005). Domain texture distributions in tetragonal lead zirconate titanate by X-ray and neutron diffraction. Journal of Applied Physics, 97, 034113.

    Article  Google Scholar 

  • Kamlah, M., Liskowsky, A. C., McMeeking, R. M., & Balke, H. (2005). Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. International Journal of Solids and Structures, 42, 2949–2964.

    Article  MATH  Google Scholar 

  • Kamlah, M., & Tsakmakis, C. (1999). Phenomenological modelling of the non-linear electromechanical coupling in ferroelectrics. International Journal of Solids and Structures, 36, 669–695.

    Article  MATH  Google Scholar 

  • Kanoute, P., Boso, D. P., Chaboche, J. L., & Schrefler, B. A. (2001). Multiscale methods for composites: A review. Archives of Computational Methods in Engineering, 16, 31–75.

    Article  MATH  Google Scholar 

  • Kouznetsova, V., Brekelmans, W. A. M., & Baaijens, F. P. T. (2001). An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27, 37–48.

    Article  MATH  Google Scholar 

  • Landis, C. M. (2002). Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. Journal of the Mechanics and Physics of Solids, 50, 127–152.

    Article  MATH  Google Scholar 

  • Li, J. Y., & Liu, D. (2004). On ferroelectric crystals with engineered domain configurations. Journal of the Mechanics and Physics of Solids, 52, 1719–1742.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y. L., Hu, S. Y., Liu, Z. K., & Chen, L. Q. (2001). Phase-field model of domain structures in ferroelectric thin films. Applied Physics Letters, 78, 3878–3880.

    Article  Google Scholar 

  • Lines, M.E., & Glass, A.M. (1977). Principles and Applications of Ferroelectrics and Related Materials. New York: Oxford University Press.

    Google Scholar 

  • Liu, Q. D., & Huber, J. E. (2007). State dependent linear moduli in ferroelectrics. International Journal of Solids and Structures, 44, 5635–5650.

    Article  Google Scholar 

  • Liu, T., & Lynch, C. S. (2006). Domain engineered relaxor ferroelectric single crystals. Continuum Mechanics and Thermodynamics, 18, 119–135.

    Article  MathSciNet  MATH  Google Scholar 

  • Loge, R. E., & Suo, Z. (1996). Nonequilibrium thermodynamics of ferroelectric domain evolution. Acta Materialia, 44, 3429–3438.

    Article  Google Scholar 

  • Lynch, C. S. (1996). The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta Materialia, 44, 4138–4148.

    Article  Google Scholar 

  • McGilly, L. J., Schilling, A., & Gregg, J. M. (2010). Domain bundle boundaries in single crystal BaTiO\(_3\) lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. Nano Letters, 10, 4200–4205.

    Article  Google Scholar 

  • Park, S. E., & Shrout, T. R. (2007). Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelectric single crystals. Journal of Applied Physics, 82, 1804–1811.

    Article  Google Scholar 

  • Pathak, A., & McMeeking, R. M. (2008). Three-dimensional finite element simulations of ferroelectric poycrystals under electrical and mechanical loading. Journal of the Mechanics and Physics of Solids, 56, 663–683.

    Article  MATH  Google Scholar 

  • Shu, Y. C., & Bhattacharya, K. (2001). Domain patterns and macroscopic behaviour of ferroelectric materials. Philosophical Magazine B, 81, 2021–2054.

    Article  Google Scholar 

  • Sidorkin, A. S. (2006). Domain Structure in Ferroelectric and Related Materials. Cambridge International Science Publishing.

    Google Scholar 

  • Su, Y., & Landis, C. M. (2007). Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning. Journal of the Mechanics and Physics of Solids, 55, 280–305.

    Article  MathSciNet  MATH  Google Scholar 

  • Tangantsev, A. K., Cross, L. E., & Fousek, J. (2010). Domains in Ferroic Crystals and Thin Films. New York: Springer.

    Book  Google Scholar 

  • Tsou, N.T. (2011) Compatible domain structures in ferroelectric single crystals, Ph.D. thesis, University of Oxford.

    Google Scholar 

  • Tsou, N. T., & Huber, J. E. (2010). Compatible domain structures and the poling of single crystal ferroelectrics. Mechanics of Materials, 42, 740–753.

    Article  Google Scholar 

  • Tsou, N. T., Huber, J. E., & Cocks, A. C. F. (2008). Evolution of compatible laminate domain structures in ferroelectric single crystals. Acta Materialia, 56, 2117–2135.

    Google Scholar 

  • Tsou, N. T., Potnis, P. R., & Huber, J. E. (2011). Classification of laminate domain patterns in ferroelectrics. Physical Review B, 83, 184120.

    Article  Google Scholar 

  • Völker, B., & Kamlah, M. (2012). Large-signal analysis of typical ferroelectric domain structures using phase-field modeling. Smart Materials and Structures, 21, 055013.

    Article  Google Scholar 

  • Wang, J. J., Ma, X. Q., Li, Q., Britson, J., & Chen, L. Q. (2013). Phase-transitions and domain structures of ferroelectric nanoparticales: Phase-field model incorporating strong elastic and dielectric inhomogeneity. Acta Materialia, 61, 7591–7603.

    Article  Google Scholar 

  • Wang, J., Kamlah, M., & Zhang, T.-Y. (2009). Phase field simulations of ferroelectric nanoparticales with different long-range-electrostatic and -elastic interactions. Journal of Applied Physics, 105, 014104.

    Article  Google Scholar 

  • Wang, J., Shi, S. Q., Chen, L. Q., Li, Y. L., & Zhang, T. Y. (2004). Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Materialia, 52, 749–764.

    Article  Google Scholar 

  • Weng, G. J., & Wong, D. T. (2009). Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and a study of enhanced electrostriction. Journal of the Mechanics and Physics of Solids, 57, 571–597.

    Article  MATH  Google Scholar 

  • Wu, T., Zhao, P., Bao, M. Q., Bur, A., Hockel, J. L., Wong, K., et al. (2011). Domain engineered switchable strain states in ferroelectric(011) [Pb(Mg\(_{1/3}\)Nb\(_{2/3})\)O\(_3\)]\(_{(1-x)}\)-[PbTiO\(_3\)]\(_{(x)}\)(PMN-PT, \(x\approx 0.32\)) single crystals. Journal of Applied Physics, 109, 124101.

    Article  Google Scholar 

  • Xu, Y. (1991). Ferroelectric Materials and their Applications, North Holland Press.

    Google Scholar 

  • Yen, J. H., Shu, Y. C., Shieh, J., & Yeh, J. H. (2008). A study of electromechanical switching in ferroelectric single crystals. Journal of the Mechanics and Physics of Solids, 56, 2117–2135.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Z. Y., James, R. D., & Muller, S. (2009). Energy barriers and hysteresis in martensitic phase transformations. Acta Materialia, 57, 4332–4352.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Nien-Ti Tsou for preparing and allowing the use of figures showing domain patterns, as well as for many helpful and informative discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huber, J.E. (2018). Electromechanical Models of Ferroelectric Materials. In: Schröder, J., C. Lupascu, D. (eds) Ferroic Functional Materials. CISM International Centre for Mechanical Sciences, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-68883-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68883-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68881-7

  • Online ISBN: 978-3-319-68883-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics