Skip to main content
Log in

Comparison of the geometrically nonlinear and linear theories of martensitic transformation

  • Original
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Over the last few years, a continuum model based on finite or nonlinear thermoelasticity has been developed and successfully used to study crystalline solids that undergo a martensitic phase transformation. A geometrically linear version of this model was developed independently and has been widely used in the materials science literature. This paper presents the two theories and evaluates them by comparing and contrasting the results in various problems. It is established that in analyzing particular microstructures, the linear theory does not offer significant simplifications and misses important details. However, in more general situations where the particular microstructure is unknown and may involve stress, the linear theory can address certain problems which are currently beyond the capabilities of the nonlinear theory. Such analysis can yield valuable qualitative information. Finally, an example where the two theories differ dramatically is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J. M.; James, R. D.: Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal. 100 (1987) 13–52

    Google Scholar 

  2. Ball, J. M.; James, R. D.: Proposed experimental tests of a theory of fine microstructure and the two well problem, Phil. Trans. Royal Soc. London A 338 (1992) 389–450

    Google Scholar 

  3. Bhattacharya, K.: Wedge-like microstructure in martensites, Acta Metall. 39 (1991) 2431–2444

    Google Scholar 

  4. Bhattacharya, K.: Self-accommodation in martensite, Arch. Rat. Mech. Anal. (1992)

  5. Chipot, M.; Kinderlehrer, D.: Equilibrium configurations of crystals, Arch. Rat. Mech. Anal. 103 (1988) 237–277

    Google Scholar 

  6. Chu, C.; James, R. D.: Detwinning thermoelastic martensites, in preparation

  7. Ericksen, J. L.: Nonlinear elasticity of diatomic crystals, Int. J. Solids Struc. 6 (1970) 951–957

    Google Scholar 

  8. Ericksen, J. L.: Special topics in elastostatics, Adv. Appl. Mech. 7, Academic Press (1977) 189–243

    Google Scholar 

  9. Ericksen, J.: On the symmetry and stability of thermoelastic solids, J. Appl. Mech. 45 (1978) 740–744

    Google Scholar 

  10. Ericksen, J.: On the symmetry of deformable crystals, Arch. Rat. Mech. Anal. 72 (1979) 1–13

    Google Scholar 

  11. Ericksen, J. L.: Some phase transitions in crystals, Arch. Rat. Mech. Anal. 73 (1980) 99–124

    Google Scholar 

  12. Ericksen, J. L.: The Cauchy and Born hypotheses for crystals, Phase transformations and material instabilities in solids (ed. Gurtin, M.), Academic Press (1984) 61–78

  13. Ericksen, J. L.: Constitutive theory for some constrained elastic crystals, Int. J. Solids Struc. 22 (1986) 951–964

    Google Scholar 

  14. Ericksen, J. L.: Weak martensitic transformation in Bravais lattices, Arch. Rat. Mech. Anal. 107 (1988) 23–36

    Google Scholar 

  15. Ericksen, J. L.: Local bifurcation theory for thermoelastic Bravais lattices, Preprint (1991)

  16. James, R. D.: Displacive phase transformations in solids, J. Mech. Phys. Solids 34 (1986) 359–394

    Google Scholar 

  17. James, R. D.: The stability and metastability of quartz, Metastability and incompletely posed problems (ed. Antman, S., Ericksen, J. L., Kinderlehrer, D. and Muller, I.), IMA Vol 3 Springer-Verlag (1987) 147–176

  18. James, R. D.; Kinderlehrer, D.: Theory of diffusionless phase transitions, PDEs and Continuum Models of Phase Trans. (ed. Rascle, M., Serre, D. and Slemrod, M.), Lecture Notes in Physics 344, Springer-Verlag (1989) 51–84

  19. Pitteri, M.: Reconciliation of local and global symmetries of crystals, J. Elasticity 14 (1984) 175–190

    Google Scholar 

  20. Pitteri, M.: On ν+1-lattices, J. Elasticity 15 (1985) 3–25

    Google Scholar 

  21. Chen, L. Q.; Wang, W.; Khachaturyan, A. G.: Transformation-induced elastic strain effect on the precipitation kinetics of ordered intermetallics, Phil. Mag. Letters 64 (1991) 241–251

    Google Scholar 

  22. Kosenko, N. S.; Roytburd, A. L.; Khandros, L. G.: Thermodynamics and morphology of martensitic transformations under external stresses, Phys Met. Metall. 5 (1977) 48–55

    Google Scholar 

  23. Kaganova, I. M.; Roytburd, A. L.: Equilibrium between elastically-interacting phases, Sov. Phys. JETP 67 (1988) 1173–1183

    Google Scholar 

  24. Khachaturyan, A. G.: Some questions concerning the theory of phase transformations in solids, Sov. Phys-Solid State 8 (1967) 2163–2168

    Google Scholar 

  25. Khachaturyan, A. G.: Theory of structural transformations in solids, John Wiley and Sons (1983)

  26. Khachaturyan, A. G.; Shatalov, G. A.: Theory of macroscopic periodicity for a phase transition in the solid state, Sov. Phys. JETP 29 (1969) 557–561

    Google Scholar 

  27. Kostlan, E.; Morris, J. W.: The preferred habit of a coherent thin-plate inclusion in an anisotropic elastic solid. Acta Metall. 35 (1987) 2167–2175

    Google Scholar 

  28. Libman, M. A.; Roytburd, A. L.: Influence of stresses on the equilibrium domain structure and phase transition temperature in ordering alloys and ferroelastics, Sov. Phys.-Cryst. 32 (1987) 5–10

    Google Scholar 

  29. Roytburd, A. L.: Domain structure caused by internal stresses in heterophase solids, Phys. Stat. Sol. (A) 16 (1973) 329–339

    Google Scholar 

  30. Roytburd, A. L.: Martensitic transformation as a typical phase transformation in solids, Solid State Physics 33 (1978) 317–390

    Google Scholar 

  31. Roytburd, A. L.: Equilibrium and phase diagrams of coherent phases in solids, Sov. Phys. — Solid State 26 (1984) 1229–1233

    Google Scholar 

  32. Roytburd, A. L.; Pankova, M. N.: Effect of external stresses on habitus orientation and substructure of stress-induced martensite plates in ferrous alloys, Phys. Met. Metall. 59 (1985) 131–140

    Google Scholar 

  33. Roytburd, A. L.; Kosenko, N. S.: Orientational dependence of the elastic energy of a plane interlayer in a system of coherent phases. Phys. Stat. Sol. (A) 35 (1976) 735–746

    Google Scholar 

  34. Semenovskaya, S.; Khachaturyan, A. G.: Kinetics of strain-related morphology transformation in YBa2Cu3O7−x, Phys. Rev. Letters 67 (1991) 2223–2226

    Google Scholar 

  35. Wen, S. H.; Khachaturyan, A. G.; Morris, J. W.: Computer simulation of a tweed-transformation in an idealized elastic crystal, Metall. Trans. A 12A (1981) 581–587

    Google Scholar 

  36. Wen, S. H.; Kostlan, E.; Hong, M.; Khachaturyan, A. G.; Morris, J. W.: The preferred habit plane of a tetragonal inclusion in a cubic matrix, Acta Metall. 29 (1981) 1247–1254

    Google Scholar 

  37. Wert, J. A.: The strain energy of a disc-shaped GP zone, Acta Metall. 24 (1976) 65–71

    Google Scholar 

  38. Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Royal Soc. London A 241 (1957) 376–396

    Google Scholar 

  39. Kohn, R. V.: The relaxation of a double-well energy, Cont. Mech. Thermodynamics 3 (1991) 193–236

    Google Scholar 

  40. Dacarogna, B.: Direct methods in the calculus of variations, Springer-Verlag (1989)

  41. Evans, L. C.: Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS 74, Am. Math. Soc. (1990)

  42. Bowles, J. S.; MacKenzie, J. K.: The crystallography of martensitic transformations I and II, Acta Metall. 2 (1954), 129–137 and 138–147

    Google Scholar 

  43. Wechsler, M. S.; Lieberman, D. S.; Read, T. A.: On the theory of the formation of martensite, J. Metals. Trans. AIME 197 (1953) 1503–1515

    Google Scholar 

  44. Bhattacharya, K.: Korn's inequality for sequences. Proc. Royal Soc. London A 434 (1991) 479–484

    Google Scholar 

  45. Kondratiev, V. A.; Oleinik, O. A.: Boundary — value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russ. Math. Surveys 43:5 (1988) 65–119

    Google Scholar 

  46. Payne, L. E.; Weinberger, H. F.: On Korn's inequality, Arch. Rat. Mech. Anal. 8 (1961) 89–98

    Google Scholar 

  47. Van Tendeloo, G.; Amelinckx, S.: Group theoretical considerations concerning domain formation in ordered alloys, Acta Cryst. A30 (1974) 431–440

    Google Scholar 

  48. Chakravorty, S.; Wayman, C. M.: The thermoelastic martensitic transformation in β′ Ni−Al alloys: I. Crystallography and morphology and II. Electron microscopy. Metall. Trans. A 7A (1976), 555–568, 569–582

    Google Scholar 

  49. Pipkin, A. C.: Elastic materials with two preferred states, Quart. J. Mech. Appl. Math. 44 (1991) 1–15

    Google Scholar 

  50. Ball, J. M.: A version of the fundamental theorem for Young measures, PDEs and Cont. Models of Phase Trans. (ed. Rascle, M., Serre, D. and Slemrod, M.), Lecture Notes in Physics 344, Springer-Verlag (1989) 207–215

  51. Kinderlehrer, D.; Pedregal, P.: Characterizations of Young measures, Arch. Rat. Mech. Anal. 115 (1991) 329–365

    Google Scholar 

  52. Tartar, L.: Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics (ed. Knops, R. J.), Res. Notes 39 (1978), Pittman, 136–212

  53. Young, L. C.: Lectures on the calculus of variations and optimal control theory, W. B. Saunders Co. (1969)

  54. Billington, E. W.; Tate, A.: The Physics of Deformation and Flow, Mc-Graw Hill (1960)

  55. Guttman, L.: Crystal structures and transformations in Indium-Thallium solid solutions, J. Metals, Trans. AIME 188 (1950) 1472–1477

    Google Scholar 

  56. Okamoto, K.; Ichinose, S.; Morri, I.; Otsuka, K.; Shimizu, K.: Crystallography of β1−γ1 stress induced martensitic transformation in a Cu−Al−Ni alloy, Acta Metall. 34 (1986) 2065–2073

    Google Scholar 

  57. Otsuka, K.; Shimizu, K.: Morphology and crystallography of thermoelastic Cu−Al−Ni martensite analyzed by the phenomenological theory, Trans. Jap. Inst. Metals 15 (1974) 103–108

    Google Scholar 

  58. Knowles, K. M.; Smith, D. A.: The crystallography of the martensitic transformation in equiatomic Nickel-Titanium. Acta Metall. 29 (1981) 101–110

    Google Scholar 

  59. Knowles, J. K.; Sternberg, E.: Discontinuous deformation gradients near the tip of a crack in finite anti-plane shear: an example, J. Elasticity 10 (1980) 81–110

    Google Scholar 

  60. Knowles, J. K.; Sternberg, E.: Anti-plane shear fields with discontinuous gradients near the tip of a crack in finite elastostatics, J. Elasticity 11 (1981) 129–164

    Google Scholar 

  61. Abeyaratne, R.: Discontinuous gradients away from the tip of a crack in anti-plane shear, J. Elasticity 11 (1981) 373–393

    Google Scholar 

  62. Silling, S. A.: Consequences of the Maxwell relation for anti-plane shear deformations of an elastic solid, J. Elasticity 19 (1988) 241–284

    Google Scholar 

  63. Rosakis, P.: Compact zones of shear transformation in an anisotropic solid. J. Mech. Phys. Solids 40 (1992) 1163–1195

    Google Scholar 

  64. Fosdick, R.; Zhang, Y.: The torsion problem for a convex stored energy function, IMA Preprint #941 (1992)

  65. Liu, X.; James, R. D.: Stability of fiber networks under biaxial stretching, in preparation

  66. Collins, C.; Luskin, M.; The computation of the austenitic-martensitic phase transition, PDEs and Cont. Models of Phase Trans. (ed. Rascle, M., Serre, D. and Slemrod, M.), Lecture Notes in Physics 344, Springer-Verlag (1989) 34–50

  67. Nicolaides, R. A.; Walkington, N. J.: Numerical minimization of free energy functionals for diffusionless phase transitions, Recent Advances in Adaptive and Sensory Materials and their Applications (ed. Rogers, C. A. and Rogers, R. C.), Technomic Publishing Co. (1992) 131–141

  68. Landau, L. D.; Lifshitz, E. M.: Statistical Physics, Pergamon Press (1958)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, K. Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Continuum Mech. Thermodyn 5, 205–242 (1993). https://doi.org/10.1007/BF01126525

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01126525

Keywords

Navigation