Skip to main content

Gold and Silver Fluorescent Nanomaterials as Emerging Probes for Toxic and Biochemical Sensors

  • Chapter
  • First Online:
Metal Nanoparticles and Clusters

Abstract

A high percentage of deaths per year worldwide are caused by environmental pollution. It is well known that excessive usage of toxic chemicals including heavy metal ions, pesticides, other food toxins, etc. leads to adverse effect to living organisms and contributing to biodiversity losses and severe damage to the environment. Thus, the detection of toxic compounds with high sensitivity and specificity in real time is essential nowadays. For the past few decades, the development of chemical sensors have received much attention due to the sensitivity and selectivity achieved, possibility of in situ monitorization with rapid response, low cost, simple instrumental setup, etc. Traditionally, the use of organic dyes such as cyanine, fluorescein, etc. or more recently the use of semiconductor quantum dots and upconverting nanoparticles has been employed as fluorophores in order to generate optical sensors. However, these fluorophores have certain limitations such as poor photostability, large particle size, or poor water solubility. On the other hand, metal nanoclusters (NCs) and nanodots (NDs) show strong luminescence with high photostability, large Stokes shifts, and good aqueous solubility and biocompatibility. It is well known that the size of metal nanoclusters is comparable to the Fermi wavelength of electrons (∼0.7 nm), giving rise to molecular-like properties and size-dependent fluorescence from visible to near-infrared range. These novel properties have been exploited in the field of chemical and biochemical sensing, bioimaging, electronic device fabrication, clean energy storage, etc.

In this chapter, we briefly summarize the most common synthesis procedures and recent progress of luminescent Ag/AuNCs and NDs. Their application for chemical and biochemical sensing is also collected, paying special attention to the detection of toxic heavy metals (including mercury, lead, copper, chromium, arsenic, etc.), toxic ions (such as cyanide, sulfide, etc.), biological compounds (cysteine, tyrosine, cysteamine, glutathione, glucose, H2O2, etc.), drugs (mercaptopurine, penicillamine, clioquinol, antibiotics, etc.) and some other interesting molecules (salicylaldehyde, poly diallyldimethyl ammonium chloride, sodium dodecyl sulfate), toxic contaminants (tea polyphenols, melamine, bisphenol A, etc.), and pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AB:

Amido black 10B

AChE:

Acetylcholinesterase

ACTI:

S-acetylthiocholine iodide

AgNCs:

Silver nanoclusters

AgNDs:

Silver nanodots

ALP:

Alkaline phosphatase

AP:

Apoferritin

APTES:

(3-aminopropyl)triethoxysilane

AuNCs:

Gold nanoclusters

AuNDs:

Gold nanodots

AuNRs:

Gold nanorods

BPA:

Bisphenol A

BSA:

Bovine serum albumin

C-dots:

Carbon dots

cfu/mL:

Colony-forming unit per milliliter

ChOx:

Cholesterol oxidase

CK2:

Protein kinase II

CSFs:

Cerebrospinal fluids

dBSA:

Denatured BSA

DHLA:

Dihydroxylipoic acid

DNA:

Deoxyribonucleic acid

ds:

Double stranded

E. coli :

Escherichia coli bacteria

EDC:

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

EDTA:

Ethylenediaminetetraacetic acid

eV:

Electron volt

FITC:

Fluorescein isothiocyanate

FRET:

Forster resonance energy transfer

GOD:

Glucose oxidase

GSH:

Glutathione

GST:

Glutathione S-transferase

h:

Hours

HAS:

Human serum albumin

HH:

Human hemoglobin

HOCl:

Hypochlorous acid

HOMO:

Highest occupied molecular orbital

L-AAO:

L-amino acid oxidase

L-DOPA:

L-3,4-dihydroxyphenylalanine

LED:

Light-emitting diode

LOD:

Lowest detection limit

LUMO:

Lowest unoccupied molecular orbital

Man:

11-mercapto-3,6,9-trioxaundecyl-r-D-mannopyranoside

μg:

Microgram

MIP:

Molecular-imprinted polymer

mL:

Milliliter

μm:

Micrometer

mM:

Millimolar

MRSA:

Methicillin-resistant Staphylococcus aureus

NAD+ :

Oxidization form of NADH

NADH:

1,4-dihydronicotinamide adenine dinucleotide

NCs:

Nanoclusters

NDs:

Nanodots

NHS:

N-Hydroxysuccinimide

NIR:

Near infrared

nm:

Nanometer

nM:

Nanomolar

PBS:

Phosphate buffer solution

PDDA:

Poly diallyldimethyl ammonium chloride

PDMAM:

Poly(N,N′-methylenebisacrylamide)

PPi:

Pyrophosphate

QY:

Quantum yield

S.E.M:

Standard error measurements

SEM:

Scanning electron microscope

SPEET:

Surface plasmon-enhanced energy transfer

ss:

Single stranded

TEM:

Transmission electron microscopy

TEOS:

Tetraethyl orthosilicate

THPC:

Tetrakis(hydroxymethyl)phosphonium chloride

TMB:

3,3′,5,5′-tetramethylbenzidine

TNT:

2,4,6-trinitrotoluene

US EPA:

US environmental protection agency

UV:

Ultraviolet

UV-vis:

Ultraviolet-visible

λem :

Emission wavelength

λex :

Excitation wavelength

μM:

Micromolar

References

  1. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)

    Article  Google Scholar 

  2. D. Diamond, Principles of Chemical and Biological Sensors (Wiley, New York, 1998)

    Google Scholar 

  3. O.A. Sadik, W.H. Land, J. Wang, Targeting chemical and biological warfare agents at the molecular level. J. Electroanal. 15, 1149–1159 (2003)

    Article  Google Scholar 

  4. M.R. Hormozi-Nezhad, E. Seyedhosseini, H. Robatjazi, C. Iranica, Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Sci. Iran. 19, 958–963 (2012)

    Article  Google Scholar 

  5. X. Chen, C. Han, H. Cheng, Y. Wang, J. Liu, Z. Xu, L. Hu, Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J. Chromatogr. A 1314, 86–93 (2013)

    Article  Google Scholar 

  6. H. Cheng, C. Wu, J. Liu, Z. Xu, Thiol-functionalized silica microspheres for online preconcentration and determination of mercury species in seawater by high performance liquid chromatography and inductively coupled plasma mass spectrometry. RSC Adv. 5, 19082–19090 (2015)

    Article  Google Scholar 

  7. A.L. Sanford, S.W. Morton, K.L. Whitehouse, H.M. Oara, L.Z. Lugo-Morales, J.G. Roberts, L.A. Sombers, Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal. Chem. 82(12), 5205–5210 (2010)

    Article  Google Scholar 

  8. Y. Ji, N. Leymarie, D.J. Haeussler, M.M. Bachschmid, C.E. Costello, C. Lin, Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem. 85, 11952–11959 (2013)

    Article  Google Scholar 

  9. V.A. Lemos, S. Novaes Gdos, A.L. de Carvalho, E.M. Gama, A.G. Santos, Determination of copper in biological samples by flame atomic absorption spectrometry after precipitation with Me-BTAP. Environ. Monit. Assess. 148, 245–253 (2009)

    Article  Google Scholar 

  10. N. Ding, Q. Cao, H. Zhao, Y. Yang, L. Zeng, Y. He, K. Xiang, G. Wang, Colorimetric assay for determination of lead(II) based on its incorporation into gold nanoparticles during their synthesis. Sensors 10, 11144–11155 (2010)

    Article  Google Scholar 

  11. J. Li, Y. Li, D. Xu, J. Zhang, Y. Wang, C. Luo, Determination of metrafenone in vegetables by matrix solid-phase dispersion and HPLC-UV method. Food Chem. 214, 77–81 (2017)

    Article  Google Scholar 

  12. X. Qu, Y. Li, L. Li, Y. Wang, J. Liang, J. Liang, Fluorescent gold nanoclusters: Synthesis and recent biological application. J. Nanomater. 2015, 784097 (2015)

    Google Scholar 

  13. J. Chena, X. Zhang, S. Cai, D. Wu, M. Chen, S. Wang, J. Zhang, A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens. Bioelectron. 57, 226–231 (2014)

    Article  Google Scholar 

  14. C.A.J. Lin, C.H. Lee, J.T. Hsieh, H.H. Wang, J.K. Li, J.L. Shen, W.H. Chan, H.I. Yeh, W.H. Chang, Synthesis of fluorescent metallic nanoclusters toward biomedical application: Recent progress and present challenges. J. Med. Biol. Eng. 29(6), 276–283 (2009)

    Google Scholar 

  15. P. Yu, X. Wen, Y.-R. Toh, X. Ma, J. Tang, Fluorescent metallic nanoclusters: Electron dynamics, structure, and application. Part. Part. Syst. Charact. 32, 142–163 (2015)

    Article  Google Scholar 

  16. R. Jin, Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2, 343–362 (2010)

    Article  Google Scholar 

  17. Z. Wu, R. Jin, On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568–2573 (2010)

    Article  Google Scholar 

  18. C.M. Aikens, Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2, 99–104 (2011)

    Article  Google Scholar 

  19. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318, 430–433 (2007)

    Article  Google Scholar 

  20. M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W.J. Murray, Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008)

    Article  Google Scholar 

  21. C. Zeng, H. Qian, T. Li, G. Li, N.L. Rosi, B. Yoon, R.N. Barnett, R.L. Whetten, U. Landman, R. Jin, Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 51, 13114–13118 (2012)

    Article  Google Scholar 

  22. Z. Luo, K. Zheng, J. Xie, Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 50, 5143–5155 (2014)

    Article  Google Scholar 

  23. R.W. Murray, Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008)

    Article  Google Scholar 

  24. C. Zeng, T. Li, A. Das, N.L. Rosi, R. Jin, Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 135, 10011–10013 (2013)

    Article  Google Scholar 

  25. M. Zhu, H. Qian, X. Meng, S. Jin, Z. Wu, R. Jin, Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett. 11, 3963–3969 (2011)

    Article  Google Scholar 

  26. P.-C. Chen, P. Roy, L.-Y. Chen, R. Ravindranth, H.-T. Chang, Gold and silver nanomaterials-based optical sensing systems. Part. Part. Syst. Charact. 31, 917–942 (2014)

    Article  Google Scholar 

  27. J. Zheng, C. Zhou, M. Yu, J. Liu, Different sized luminescent gold nanoparticles. Nanoscale 4, 4073–4083 (2012)

    Article  Google Scholar 

  28. A. Mooradian, Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969)

    Article  Google Scholar 

  29. D. Lee, R.L. Donkers, G. Wang, A.S. Harper, R.W. Murray, Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J. Am. Chem. Soc. 126, 6193–6199 (2004)

    Article  Google Scholar 

  30. J.P. Wilcoxon, B.L. Abrams, Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006)

    Article  Google Scholar 

  31. Z. Yuan, Y. Du, Y.T. Tseng, M. Peng, N. Cai, Y. He, H.T. Chang, E.S. Yeung, Fluorescent gold nanodots based sensor array for proteins discrimination. Anal. Chem. 87, 4253–4259 (2015)

    Article  Google Scholar 

  32. M. Cui, Y. Zhao, Q. Song, Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. Trends Anal. Chem. 57, 73–82 (2014)

    Article  Google Scholar 

  33. S. Zhu, Y. Zhuo, H. Miao, D. Zhong, X. Yang, Detection of mercury(II) by DNA templated gold nanoclusters based on forming thymidine-Hg(2+)-thymidine duplexes. Luminescence 30, 631–636 (2015)

    Article  Google Scholar 

  34. V. Venkatesh, A. Shukla, S. Sivakumar, S. Verma, Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications. ACS Appl. Mater. Interfaces 6(3), 2185–2191 (2014)

    Article  Google Scholar 

  35. H. Duan, S. Nie, Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 129(9), 2412–2413 (2007)

    Article  Google Scholar 

  36. T.-H. Chen, L. C-Y, W.-L. Tseng, One-pot synthesis of two-sized clusters for ratiometric sensing of Hg2+. Talanta 117, 258–262 (2013)

    Article  Google Scholar 

  37. S. Xu, H. Yang, K. Zhao, J. Li, L. Mei, Y. Xie, A. Deng, Simple and rapid preparation of orange-yellow fluorescent gold nanoclusters using DL-homocysteine as a reducing/stabilizing reagent and their application in cancer cell imaging. RSC Adv. 5, 11343–11348 (2015)

    Article  Google Scholar 

  38. T.U.B. Rao, T. Pradeep, Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 49, 3925–3929 (2010)

    Article  Google Scholar 

  39. J. Zheng, C. Zhang, R.M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 77402 (2004)

    Article  Google Scholar 

  40. Y. Lu, W. Chen, Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594–3623 (2012)

    Article  Google Scholar 

  41. X. Yuan, Z. Luo, Y. Yu, Q. Yao, J. Xie, Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 8, 858–871 (2013)

    Article  Google Scholar 

  42. X.-H. Zhang, T.-Y. Zhou, X. Chen, Applications of metal nanoclusters in environmental monitoring. Chinese J. Anal. Chem. 43(9), 1296–1305 (2015)

    Article  Google Scholar 

  43. L. Shang, S. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6(4), 401–418 (2011)

    Article  Google Scholar 

  44. L. Shang, R.M. Dörlich, S. Brandholt, R. Schneider, V. Trouillet, M. Bruns, D. Gerthsen, G.U. Nienhaus, Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3(5), 2009–2014 (2011)

    Article  Google Scholar 

  45. A. Mathew, T. Pradeep, Noble metal clusters: Applications in energy, environment, and biology. Part. Part. Syst. Charact. 31(10), 1017–1053 (2014)

    Article  Google Scholar 

  46. J. Sun, Y. Jin, Fluorescent au nanoclusters: Recent progress and sensing applications. J. Mater. Chem. C 2, 8000–8011 (2014)

    Article  Google Scholar 

  47. L. Zhang, E. Wang, Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 9, 132–157 (2014)

    Article  Google Scholar 

  48. https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants#Inorganic

  49. Y. Qiao, Y. Zhang, C. Zhang, L. Shi, G. Zhang, S. Shuang, C. Dong, H. Ma, Water-soluble gold nanoclusters-based fluorescence probe for highly selective and sensitive detection of Hg2+. Sens. Actuators B Chem. 224, 458–464 (2016)

    Article  Google Scholar 

  50. S. Xu, X. Li, Y. Mao, T. Gao, X. Feng, X. Luo, Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline. Anal. Bioanal. Chem. 408, 2955–2962 (2016)

    Article  Google Scholar 

  51. Y. Yan, H. Yu, K. Zhang, M. Sun, Y. Zhang, X. Wang, S. Wang, Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 9(7), 2088–2096 (2016)

    Article  Google Scholar 

  52. N.-Y. Hsu, Y.-W. Lin, Microwave-assisted synthesis of bovine serum albumin–gold nanoclusters and their fluorescence-quenched sensing of Hg2+ ions. New J. Chem. 40, 1155–1161 (2016)

    Article  Google Scholar 

  53. Y. Wang, Y. Cui, R. Liu, F. Gao, L. Gao, X. Gao, Bio-inspired peptide-Au cluster applied for mercury(II) ions detection. Sci. China Chem. 58(5), 819–824 (2015)

    Article  Google Scholar 

  54. C. Zhang, Z. Guo, G. Chen, G. Zeng, M. Yan, Q. Niu, L. Liu, Y. Zuo, Z. Huang, Q. Tan, Green-emitting fluorescence Ag clusters: Facile synthesis and sensors for Hg2+ detection. New J. Chem. 40, 1175–1181 (2016)

    Article  Google Scholar 

  55. D. Li, B. Li, G. Lee, S.I. Yang, Facile synthesis of fluorescent silver nanoclusters as simultaneous detection and remediation for Hg2+. Bull. Kor. Chem. Soc. 36, 1703–1706 (2015)

    Article  Google Scholar 

  56. J. Peng, J. Ling, X.Q. Zhang, H.P. Bai, L. Zheng, Q.E. Cao, Z. Ding, Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. Spectrochim. Acta A 137, 1250–1257 (2015)

    Article  Google Scholar 

  57. X. Liu, L. Wang, N. Zhang, D. Shangguan, Ratiometric fluorescent silver nanoclusters for the determination of mercury and copper ions. Anal. Methods 7, 8019–8024 (2015)

    Article  Google Scholar 

  58. D. Lu, Z. Chen, Y. Li, J. Yang, S. Shuang, C. Dong, Determination of mercury(II) by fluorescence using deoxyribonucleic acid stabilized silver nanoclusters. Anal. Lett. 48, 281–290 (2015)

    Article  Google Scholar 

  59. M. Xu, Z. Gao, Q. Wei, G. Chen, D. Tang, Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification. Biosens. Bioelectron. 79, 411–415 (2016)

    Article  Google Scholar 

  60. X.-F. Wang, L.-P. Xiang, Y.-S. Wang, J.-H. Xue, Y.-F. Zhu, Y.-Q. Huang, S.-H. Chen, X. Tang, A “turn-on” fluorescence assay for lead(II) based on the suppression of the surface energy transfer between acridine orange and gold nanoparticles. Microchim. Acta 182, 695–701 (2015)

    Article  Google Scholar 

  61. Z. Yuan, M. Peng, Y. He, E.S. Yeung, Functionalized fluorescent gold nanodots: Synthesis and application for Pb2+ sensing. Chem. Commun. 47, 11981–11983 (2011)

    Article  Google Scholar 

  62. F. Ma, S. Liang, Y. Peng, Y. Kuang, X. Zhang, S. Chen, Y. Long, R. Zeng, Copper ion detection using novel silver nanoclusters stabilized with amido black 10B. Anal. Bioanal. Chem. 408, 3239–3246 (2016)

    Article  Google Scholar 

  63. J. Zhang, Y. Yuan, Y. Wang, F. Sun, G. Liang, Z. Jiang, Y. S-H, Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 8(7), 2329–2339 (2015)

    Article  Google Scholar 

  64. H.H. Deng, L.N. Zhang, S.B. He, A.L. Liu, G.W. Li, X.H. Lin, X.H. Xia, W. Chen, Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu(2+) sensing. Biosens. Bioelectron. 65, 397–403 (2015)

    Article  Google Scholar 

  65. M. Shamsipur, F. Molaabasi, M. Shanehsaz, A.A. Moosavi-Movahedi, Novel blue-emitting gold nanoclusters confined in human hemoglobin, and their use as fluorescent probes for copper(II) and histidine. Microchim. Acta 182, 1131–1141 (2015)

    Article  Google Scholar 

  66. Y. Chang, Z. Zhang, J. Hao, W. Yang, J. Tang, BSA-stabilized au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sens. Actuators B Chem. 232, 692–697 (2016)

    Article  Google Scholar 

  67. Y. Yue, T.Y. Liu, H.W. Li, Z. Liu, Y. Wu, Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4, 2251–2254 (2012)

    Article  Google Scholar 

  68. M.A.E. Francos, R. Badía-Laíño, M.E. Díaz-García, Fluorescence sensitization of gold-glutathione nanoclusters by aqueous solutions of sodium and potassium ions. Microchim. Acta 182, 1591–1598 (2015)

    Article  Google Scholar 

  69. P. Brissot, M. Ropert, C.L. Lan, O. Loreal, Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta 1820, 403–410 (2012)

    Article  Google Scholar 

  70. T. Chen, Y. Hu, Y. Cen, X. Chu, Y. Lu, A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 135, 11595–11602 (2013)

    Article  Google Scholar 

  71. S. Yang, Z. Jiang, Z. Chen, L. Tong, J. Lu, J. Wang, Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim. Acta 182, 1911–1916 (2015)

    Article  Google Scholar 

  72. X. Mu, L. Qi, P. Dong, J. Qiao, J. Hou, Z. Nie, H. Ma, Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens. Bioelectron. 49, 249–255 (2013)

    Article  Google Scholar 

  73. J.A. Ho, H.C. Chang, W.T. Su, DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem. 84, 3246–3253 (2012)

    Article  Google Scholar 

  74. S. Roy, G. Palui, A. Banerjee, The as-prepared gold cluster-based fluorescent sensor for the selective detection of As(III) ions in aqueous solution. Nanoscale 4, 2734–2740 (2012)

    Article  Google Scholar 

  75. J. Sun, J. Zhang, Y. Jin, 11-Mercaptoundecanoic acid directed one-pot synthesis of water-soluble fluorescent gold nanoclusters and their use as probes for sensitive and selective detection of Cr3+ and Cr6+. J. Mater. Chem. C 1, 138–143 (2013)

    Article  Google Scholar 

  76. C.W. Wang, Y.N. Chen, B.Y. Wu, C.K. Lee, Y.C. Chen, Y.H. Huang, H.T. Chang, Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 408, 287–294 (2016)

    Article  Google Scholar 

  77. N. Vasimalai, M.T. Fernandez-Arguelles, Novel one-pot and facile room temperature synthesis of gold nanodots and application as highly sensitive and selective probes for cyanide detection. Nanotechnology 27, 475505 (2016)

    Article  Google Scholar 

  78. H. Sun, D. Lu, M. Xian, C. Dong, S. Shuang, A lysozyme-stabilized silver nanocluster fluorescent probe for the detection of sulfide ions. Anal. Methods 8, 4328–4333 (2016)

    Article  Google Scholar 

  79. L. Wang, G. Chen, G. Zeng, J. Liang, H. Dong, M. Yan, Z. Li, Z. Guo, W. Tao, L. Peng, Fluorescent sensing of sulfide ions based on papain-directed gold nanoclusters. New J. Chem. 39, 9306–9312 (2015)

    Article  Google Scholar 

  80. R. Li, P. Xu, Y. Tu, J. Yan, Albumin-stabilized gold nanoclusters as viable fluorescent probes in non-titrimetric iodometry for the detection of oxidizing analytes. Microchim. Acta 183, 497–502 (2016)

    Article  Google Scholar 

  81. R. Li, P. Xu, J. Fan, J. Di, Y. Tu, J. Yan, Sensitive iodate sensor based on fluorescence quenching of gold nanocluster. Anal. Chim. Acta 827, 80–85 (2014)

    Article  Google Scholar 

  82. F. Qu, N.B. Li, H.Q. Luo, Polyethyleneimine-templated ag nanoclusters: A new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem. 84(23), 10373–10379 (2012)

    Article  Google Scholar 

  83. B. Unnikrishnan, S.C. Wei, W.J. Chiu, J. Cang, P.H. Hsu, C.C. Huang, Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: Mechanism and application. Analyst 139, 2221–2228 (2014)

    Article  Google Scholar 

  84. X. Wang, P. Wu, X. Hou, Y. Lv, An ascorbic acid sensor based on protein-modified Au nanoclusters. Analyst 138, 229–233 (2013)

    Article  Google Scholar 

  85. C.-W. Chen, C.-H. Wang, C.-M. Wei, C.-Y. Hsieh, Y.-T. Chen, Y.-F. Chen, C.-W. Lai, C.-L. Liu, C.-C. Hsieh, P.-T. Chou, Highly sensitive emission sensor based on surface plasmon enhanced energy transfer between gold nanoclusters and silver nanoparticles. J. Phys. Chem. C 114, 799–802 (2010)

    Article  Google Scholar 

  86. J.M. Liu, J.T. Chen, X.P. Yan, Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 85, 3238–3245 (2013)

    Article  Google Scholar 

  87. X. Yan, H. Li, B. Cao, Z. Ding, X. Su, A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Microchim. Acta 182, 1281–1288 (2015)

    Article  Google Scholar 

  88. H. Li, Y. Cheng, Y. Liu, B. Chen, Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells. Talanta 158, 118–124 (2016)

    Article  Google Scholar 

  89. T. Shu, L. Su, J. Wang, C. Li, X. Zhang, Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. Biosens. Bioelectron. 66, 155–161 (2015)

    Article  Google Scholar 

  90. X. Xu, J. Qiao, N. Li, L. Qi, S. Zhang, Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs. Anal. Chim. Acta 879, 97–103 (2015)

    Article  Google Scholar 

  91. Z.-X. Wang, S.-N. Ding, E.Y.J. Narjh, Determination of thiols by fluorescence using au@ag nanoclusters as probes. Anal. Lett. 48, 647–658 (2015)

    Article  Google Scholar 

  92. S. Xu, T. Gao, X. Feng, Y. Mao, P. Liu, X. Yu, X. Luo, Dual ligand co-functionalized fluorescent gold nanoclusters for the “turn on” sensing of glutathione in tumor cells. J. Mater. Chem. B 4, 1270–1275 (2016)

    Article  Google Scholar 

  93. D. Tian, Z. Qian, Y. Xia, C. Zhu, Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir 28, 3945–3951 (2012)

    Article  Google Scholar 

  94. L. Hu, S. Han, S. Parveen, Y. Yuan, L. Zhang, G. Xu, Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 32, 297–299 (2012)

    Article  Google Scholar 

  95. G.L. Wang, L.Y. Jin, Y.M. Dong, X.M. Wu, Z.J. Li, Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens. Bioelectron. 64, 523–529 (2015)

    Article  Google Scholar 

  96. X. Jiang, D.-Q. Feng, G. Liu, D. Fan, W. Wang, A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters. Sens. Actuators B Chem. 232, 276–282 (2016)

    Article  Google Scholar 

  97. Y. Zhu, X.C. Hu, S. Shi, R.R. Gao, H.L. Huang, Y.Y. Zhu, X.Y. Lv, T.M. Yao, Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens. Bioelectron. 79, 205–212 (2016)

    Article  Google Scholar 

  98. P.H. Li, J.Y. Lin, C.T. Chen, W.R. Ciou, P.H. Chan, L. Luo, H.Y. Hsu, E.W. Diau, Y.C. Chen, Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Anal. Chem. 84, 5484–5488 (2012)

    Article  Google Scholar 

  99. S. Liu, H. Wang, Z. Cheng, H. Liu, Facile synthesis of near infrared fluorescent trypsin-stabilized Ag nanoclusters with tunable emission for 1,4-dihydronicotinamide adenine dinucleotide and ethanol sensing. Anal. Chim. Acta 886, 151–156 (2015)

    Article  Google Scholar 

  100. L.Y. Chen, C.C. Huang, W.Y. Chen, H.J. Lin, H.T. Chang, Using photoluminescent gold nanodots to detect hemoglobin in diluted blood samples. Biosens. Bioelectron. 43, 38–44 (2013)

    Article  Google Scholar 

  101. X. Chen, G.A. Baker, Cholesterol determination using protein-templated fluorescent gold nanocluster probes. Analyst 138, 7299–7302 (2013)

    Article  Google Scholar 

  102. J. Wang, Y. Chang, W.B. Wu, P. Zhang, S.Q. Lie, C.Z. Huang, Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Talanta 152, 314–320 (2016)

    Article  Google Scholar 

  103. P. Xu, R. Li, Y. Tu, J. Yan, A gold nanocluster-based sensor for sensitive uric acid detection. Talanta 144, 704–709 (2015)

    Article  Google Scholar 

  104. Y. Tao, Y. Lin, J. Ren, X. Qu, A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 42, 41–46 (2013)

    Article  Google Scholar 

  105. Y. Teng, X. Jia, J. Li, E. Wang, Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal. Chem. 87, 4897–4902 (2015)

    Article  Google Scholar 

  106. J. Sun, F. Yang, X. Yang, Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing. Nanoscale 7, 16372–16380 (2015)

    Article  Google Scholar 

  107. Y. Xu, P.E. Pehrsson, L. Chen, R. Zhang, W. Zhao, Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C 111, 8638–8643 (2007)

    Article  Google Scholar 

  108. J. Lu, R.F. Bu, Z.L. Sun, Q.S. Lu, H. Jin, Y. Wang, S.H. Wang, L. Li, Z.L. Xie, B.Q. Yang, Comparable efficacy of self-monitoring of quantitative urine glucose with self-monitoring of blood glucose on glycaemic control in non-insulin-treated type 2 diabetes. Diabetes Res. Clin. Pract. 93, 179–186 (2011)

    Article  Google Scholar 

  109. X. Jiang, C. Sun, Y. Guo, G. Nie, L. Xu, Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens. Bioelectron. 64, 165–170 (2015)

    Article  Google Scholar 

  110. L. Jin, L. Shang, S. Guo, Y. Fang, D. Wen, L. Wang, J. Yin, S. Dong, Biomolecule-stabilized au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron. 26, 1965–1969 (2011)

    Article  Google Scholar 

  111. L.-L. Wang, J. Qiao, L. Qi, X.-Z. Xu, D. Li, Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose. Sci. China Chem. 58(9), 1508–1514 (2015)

    Article  Google Scholar 

  112. X. Xia, Y. Long, J. Wang, Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal. Chim. Acta 772, 81–86 (2013)

    Article  Google Scholar 

  113. F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83, 1193–1196 (2011)

    Article  Google Scholar 

  114. M. Dasog, R.W.J. Scott, Understanding the oxidative stability of gold monolayer-protected clusters in the presence of halide ions under ambient conditions. Langmuir 23, 3381–3387 (2007)

    Article  Google Scholar 

  115. Y.C. Shiang, C.C. Huang, H.T. Chang, Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun. 23, 3437–3439 (2009)

    Google Scholar 

  116. T. Das, D.K. Poria, P. Purkayastha, NIR-emitting chiral gold nanoclusters coated with γ-cyclodextrin are pH sensitive: Application as biomarker. Nanomed. Nanotech. Biol. Med. 12, 1105–1112 (2016)

    Google Scholar 

  117. C. Ding, Y. Tian, Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 65, 183–190 (2015)

    Article  Google Scholar 

  118. C.Y. Ke, Y.T. Wu, W.L. Tseng, Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system. Biosens. Bioelectron. 69, 46–53 (2015)

    Article  Google Scholar 

  119. W. Song, Y. Wang, R.-P. Liang, L. Zhang, J.-D. Qiu, Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens. Bioelectron. 64, 234–240 (2015)

    Article  Google Scholar 

  120. L. Qin, X. He, L. Chen, Y. Zhang, Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods. ACS Appl. Mater. Interfaces 7(10), 5965–5971 (2015)

    Article  Google Scholar 

  121. H. Li, Y. Guo, L. Xiao, B. Chen, Selective and sensitive detection of acetylcholinesterase activity using denatured protein-protected gold nanoclusters as a label-free probe. Analyst 139, 285–289 (2014)

    Article  Google Scholar 

  122. W.Y. Chen, L.Y. Chen, C.M. Ou, C.C. Huang, S.C. Wei, H.T. Chang, Synthesis of fluorescent gold nanodot-liposome hybrids for detection of phospholipase C and its inhibitor. Anal. Chem. 85, 8834–8840 (2013)

    Article  Google Scholar 

  123. Y. Chen, H. Zhou, Y. Wang, W. Li, J. Chen, Q. Lin, C. Yu, Substrate hydrolysis triggered formation of fluorescent gold nanoclusters-A new platform for the sensing of enzyme activity. Chem. Commun. 49, 9821–9823 (2013)

    Article  Google Scholar 

  124. Y. Chen, W. Li, Y. Wang, X. Yang, J. Chen, Y. Jiang, C. Yu, Q. Lin, Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J. Mater. Chem. C 2, 4080–4085 (2014)

    Article  Google Scholar 

  125. Y. Wang, Y. Wang, F. Zhou, P. Kim, Y. Xia, Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8(24), 3769–3773 (2012)

    Article  Google Scholar 

  126. Z. Tan, H. Xu, G. Li, X. Yang, M.M. Choi, Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Spectrochim. Acta A 149, 615–620 (2015)

    Article  Google Scholar 

  127. K. Chatterjee, C.W. Kuo, A. Chen, P. Chen, Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper. J. Nanobiotechnol. 13, 46 (2015). https://doi.org/10.1186/s12951-015-0105-5

    Article  Google Scholar 

  128. Z. Li, Y. Wang, Y. Ni, S. Kokot, Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4─SiO2 nanoparticles. Biosens. Bioelectron. 70, 246–253 (2015)

    Article  Google Scholar 

  129. P. Wang, B.L. Li, N.B. Li, H.Q. Luo, A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters. Spectrochim. Acta A 135, 198–202 (2015)

    Article  Google Scholar 

  130. J. Wang, Y. Chang, P. Zhang, S.Q. Lie, P.F. Gao, C.Z. Huang, Cu(2+)-mediated fluorescence switching of gold nanoclusters for the selective detection of clioquinol. Analyst 140, 8194–8200 (2015)

    Article  Google Scholar 

  131. X. Wang, P. Wu, Y. Lv, X. Hou, Ultrasensitive fluorescence detection of glutaraldehyde in water samples with bovine serum albumin-Au nanoclusters. Microchem. J. 99, 327–331 (2011)

    Article  Google Scholar 

  132. Z. Chen, S. Qian, X. Chen, W. Gao, Y. Lin, Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate. Analyst 137, 4356–4361 (2012)

    Article  Google Scholar 

  133. T. Zhao, Z.-Q. Xuan, A. Wan, R. Gui, Bovine serum albumin template synthesis of fluorescent gold nanoclusters for nitric oxide detection in vitro. Mater. Technol. 31(6), 342–347 (2016)

    Google Scholar 

  134. X. Liu, C. Fu, X. Ren, H. Liu, L. Li, X. Meng, Fluorescence switching method for cascade detection of salicylaldehyde and Zinc(II) ion using protein protected gold nanoclusters. Biosens. Bioelectron. 74, 322–328 (2015)

    Article  Google Scholar 

  135. L.V. Nair, D. Philips, R. Jayasree, A. Ajayaghosh, A near-infrared fluorescent nanosensor (AuC@Urease) for the selective detection of blood urea. Small 9(16), 2673–2677 (2013)

    Article  Google Scholar 

  136. C.L. Zheng, Z.X. Ji, J. Zhang, S.N. Ding, A fluorescent sensor to detect sodium dodecyl sulfate based on the glutathione-stabilized gold nanoclusters/poly diallyldimethylammonium chloride system. Analyst 139, 3476–3480 (2014)

    Article  Google Scholar 

  137. S. Wanga, P. Liua, Y. Qinb, Z. Chena, J. Shen, Rapid synthesis of protein conjugated gold nanoclusters and their application in tea polyphenol sensing. Sens. Actuators B Chem. 223, 178–185 (2016)

    Article  Google Scholar 

  138. C.L. Gopu, A.S. Krishna, K. Sreenivasan, Fluorimetric detection of hypochlorite using albumin stabilized gold nanoclusters. Sens. Actuators B Chem. 209, 798–802 (2015)

    Article  Google Scholar 

  139. H. Dai, Y. Shi, Y. Wang, Y. Sun, J. Hu, P. Ni, Z. Li, Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens. Bioelectron. 53, 76–81 (2014)

    Article  Google Scholar 

  140. X. Yang, J. Wang, D. Su, Q. Xia, F. Chai, C. Wang, F. Qu, Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Trans. 43, 10057–10063 (2014)

    Article  Google Scholar 

  141. X. Wu, Z. Zhang, J. Li, H. You, Y. Li, L. Chen, Molecularly imprinted polymers-coated gold nanoclusters for fluorescent detection of bisphenol A. Sens. Actuators B Chem. 211, 507–514 (2015)

    Article  Google Scholar 

  142. D. Cheng, M. Yu, F. Fu, W. Han, G. Li, J. Xie, Y. Song, M.T. Swihart, E. Song, Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal. Chem. 88, 820–825 (2016)

    Article  Google Scholar 

  143. J. Liu, L. Lu, S. Xu, L. Wang, One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition abilities for visualization fluorescence enhancement detection of E. coli. Talanta 134, 54–59 (2015)

    Article  Google Scholar 

  144. P.H. Chan, Y.C. Chen, Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal. Chem. 84, 8952–8956 (2012)

    Article  Google Scholar 

  145. C.C. Huang, C.T. Chen, Y.C. Shiang, Z.H. Lin, H.T. Chang, Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal. Chem. 81, 875–882 (2009)

    Article  Google Scholar 

  146. Y.-T. Tseng, R. Cherng, Z. Yuan, C.-W. Wu, H.-T. Chang, C.-C. Huang, Ultrasound-mediated modulation of the emission of gold nanodots. Nanoscale 8, 5162–5169 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagamalai Vasimalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasimalai, N., Fernandez-Argüelles, M.T. (2018). Gold and Silver Fluorescent Nanomaterials as Emerging Probes for Toxic and Biochemical Sensors. In: Deepak, F. (eds) Metal Nanoparticles and Clusters. Springer, Cham. https://doi.org/10.1007/978-3-319-68053-8_9

Download citation

Publish with us

Policies and ethics