Skip to main content
Log in

Determination of copper in biological samples by flame atomic absorption spectrometry after precipitation with Me-BTAP

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A simple and sensitive method was developed for determination of trace copper by direct precipitation preconcentration and detection with Flame Atomic Absorption Spectrometry (FAAS). The reagent 2-[2′-(6-methyl-benzothiazolylazo)]-4-aminophenol (Me-BTAP) was used as precipitating agent. The experimental conditions for the quantitative precipitation of copper, such as pH, amount of reagents, temperature and the effect of diverse ions on the precipitation have been investigated. It was found that copper is quantitatively extracted (≥95%) and the method provides a sensitivity enhancement of 40-fold for a 10 ml sample volume with a detection limit of 0.5 μg l−1. The proposed method was successfully applied for the determination of trace copper in water, urine and biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akatsuka, K., & Atsuya, I. (1987). Preconcentration by coprecipitation of submicrogram amounts of copper and manganese with 8-quinolinol and direct electrothermal atomic absorption spectrometry of the precipitates. Analytica Chimica Acta, 202, 223–230.

    Article  CAS  Google Scholar 

  • Babu, S. H., Kumar, K. S., Suvardhan, K., Kiran, K., Rekha, D., Krishnaiah, L., et al. (2007). Preconcentration technique for the determination of trace elements in natural water samples by ICP-AES. Environmental Monitoring and Assessment, 128, 241–249.

    Article  CAS  Google Scholar 

  • Bezerra, M. A., Arruda, M. A. Z., & Ferreira, S. L. C. (2005). Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques, a review. Applied Spectroscopy Reviews, 40, 269–299.

    Article  CAS  Google Scholar 

  • Butcher, D. J. (2006). Advances in electrothermal atomization atomic absorption spectrometry: Instrumentation, methods, and applications. Appled Spectroscopy Reviews, 41, 15–34.

    Article  CAS  Google Scholar 

  • Cerutti, S., Ferreira, S. L. C., Gásquez, J. A., Olsina, R. A., & Martinez, L. D. (2004). Optimization of the preconcentration system of cadmium with 1(2-thiazolylazo)pcresol using a knotted reactor and flame atomic absorption spectrometric detection. Journal of Hazardous Materials, 112, 279–283.

    Article  CAS  Google Scholar 

  • Cerutti, S., Martinez, L. D., & Wuilloud, R. G. (2005). Knotted reactors and their role in flow-injection on-line preconcentration systems coupled to atomic spectrometry-based detectors. Applied Spectroscopy Reviews, 40, 71–101.

    Article  CAS  Google Scholar 

  • De Sousa, R. A., Baccan, N., & Cadore, S. (2006). Analysis of liquid stevioside and cyclamate-saccharin dietetic sweeteners by inductively coupled plasma optical emission spectrometry without sample treatment. Journal of the Brazilian Chemical Society, 17, 1393–1399.

    Google Scholar 

  • Divrikli, Ü., & Elçi, L. (2002). Determination of some trace metals in water and sediment samples by flame atomic absorption spectrometry after coprecipitation with cerium (IV) hydroxide. Analytica Chimica Acta, 452, 231–235.

    Article  CAS  Google Scholar 

  • Doner, G., & Ege, A. (2005). Determination of copper, cadmium and lead in seawater and mineral water by flame atomic absorption spectrometry after coprecipitation with aluminum hydroxide. Analytica Chimica Acta, 547, 14–17.

    Article  CAS  Google Scholar 

  • dos Santos, W. N. L., da Silva, E. G. P., Fernandes, M. S., Araújo, R. G., Costa, A. C. S., Vale, M. G. R., et al. (2005). Determination of copper in powdered chocolate samples by slurry-sampling flame atomic-absorption spectrometry. Analytical and Bioanalytical Chemistry, 382, 1099–1102.

    Article  CAS  Google Scholar 

  • Dundar, M. S., & Altundag, H. (2007). Investigation of heavy metal contaminations in the lower Sakarya river water and sediments. Environmental Monitoring and Assessment, 128, 177–181.

    Article  CAS  Google Scholar 

  • Elçi, L., Sahan, D., Basaran, A., & Soylak, M. (2007). Solid phase extraction of gold(III) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination. Environmental Monitoring and Assessment, 132, 331–338.

    Article  Google Scholar 

  • Elçi, L., Sahin, U., & Oztas, S. (1987). Determination of trace amounts of some metals in samples with high salt content by atomic absorption spectrometry after cobalt-diethyldithiocarbamate coprecipitation. Talanta, 44, 1017–1023.

    Article  Google Scholar 

  • Fang, Z. (1993). Flow injection separation and preconcentration (1st ed.). New York: Wiley.

    Google Scholar 

  • Lemos, V. A., & Baliza, P. X. (2005). Amberlite XAD-2 functionalized with 2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium and copper. Talanta, 67, 564–560.

    Article  CAS  Google Scholar 

  • Lemos, V. A., David, G. T., & Santos, L. N. (2006a). Synthesis and application of XAD-2/Me-BTAP resin for on-line solid phase extraction and determination of trace metals in biological samples by FAAS. Journal of the Brazilian Chemical Society, 17, 697–704.

    CAS  Google Scholar 

  • Lemos, V. A., Santos, L. N., Alves, A. P. O., & David, G. T. (2006b). Chromotropic acid-functionalized polyurethane foam, A new sorbent for on-line preconcentration and determination of cobalt and nickel in lettuce samples. Journal of Separation Science, 29, 1197–1204.

    Article  CAS  Google Scholar 

  • Lemos, V. A., Santos, M. S., dos Santos, M. J. S., Vieira, D. R., & Novaes, C. G. (2007). Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction. Microchimica Acta, 157, 215–222.

    Article  CAS  Google Scholar 

  • Liu, J. S., Chen, H. W., Mao, X. Q., & Jin, X. (2000). Determination of trace copper, lead, cadmium, and iron in environmental and biological samples by flame atomic absorption spectrometry coupled to flow injection on-line coprecipitation preconcentration using DDTC-nickel as coprecipitate carrier. International Journal of Environmental Analytical Chemistry, 76, 267–282.

    Article  CAS  Google Scholar 

  • Locatelli, C. (2007). Voltammetric methods for the simultaneous determination of trace metals in foods, plant tissues and soils. Journal of the Science of Food and Agriculture, 87, 305–312.

    Article  CAS  Google Scholar 

  • Martín-Esteban, A., Garcinuño, R. M., Angelino, S., Fernández, P., & Câmara, C. (1999). Determination of trace metals in waters and compost by on-line precipitation coupled to flame atomic absorption spectrophotometry or ion chromatography. Talanta, 48, 959–966.

    Article  Google Scholar 

  • Mckenzie, H. A., & Smythe, L. E. (1988). Quantitative trace analysis of biological materials. Amsterdam: Elsevier.

    Google Scholar 

  • Minami, T., Sohrin, Y., & Ueda, J. (2005). Determination of chromium, copper and lead in river water by graphite-furnace atomic absorption spectrometry after coprecipitation with terbium hydroxide. Analytical Sciences, 21, 1519–1521.

    Article  CAS  Google Scholar 

  • Pereira, M. G., & Arruda, M. A. Z. (2003). Trends in preconcentration procedures for metal determination using atomic spectrometry techniques. Microchimica Acta, 141, 115–131.

    Article  CAS  Google Scholar 

  • Saracoglu, S., Soylak, M., Kacar Peker, D. S., Elci, L., dos Santos, W. N. L., Lemos, V. A., et al. (2006). A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Analytica Chimica Acta, 575, 133–137.

    Article  CAS  Google Scholar 

  • Soylak, M., Divrikli, U., Saracoglu, S., & Elçi, L. (2007). Membrane filtration—atomic absorption spectrometry combination for copper, cobalt, cadmium, lead and chromium in environmental samples. Environmental Monitoring and Assessment, 127, 169–176.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Buyukbas, H., & Kartal, S. (2006). Preconcentration of trace elements by using 1-(2-pyridylazo)-2-naphthol functionalized amberlite XAD-1180 resin and their determination by FAAS. Journal of the Brazilian Chemical Society, 17, 98–106.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Oymak, T., & Kartal, S. (2007). Coprecipitation of lead and cadmium using copper(II) mercaptobenzothiazole prior to flame atomic absorption spectrometric determination. Microchimica Acta, 159, 133–139.

    Article  CAS  Google Scholar 

  • Tokman, N., Akman, S., & Ozeroglu, C. (2004). Determination of lead, copper and manganese by graphite furnace atomic absorption spectrometry after separation/concentration using a water-soluble polymer. Talanta, 63, 699–703.

    Article  CAS  Google Scholar 

  • Welz, B., & Sperling, M. (1999). Atomic absorption spectrometry (3rd ed.). Weinheim: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valfredo A. Lemos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemos, V.A., Novaes, G.d.S., de Carvalho, A.L. et al. Determination of copper in biological samples by flame atomic absorption spectrometry after precipitation with Me-BTAP. Environ Monit Assess 148, 245–253 (2009). https://doi.org/10.1007/s10661-008-0155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0155-3

Keywords

Navigation