Skip to main content

Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

This review presents the state-of-the-art in the development of iron-based degradable medical implants. Basic properties demanded by the new concept of degradable implants are elaborated, along with the work devoted to understand the underlying mechanism and to improve the properties towards best fitted to the natural tissue. Three application areas are considered: vascular stents, orthopedic implants and tissue engineering scaffolds. Each of these has its own specific demands imposed upon the artificial substitution materials. Biocompatibility is an essential feature that each medical implant must have, but different aspects can be considered depending on the end application. Furthermore, adequate mechanical properties and various characteristics related to the fabrication and in vitro and in vivo testing are presented for pure iron, alloys and composites, as well as joint structures. Corrosion control is a foundation in the development of these materials development and different aspects are also given. Iron-based materials need increased degradation rate because they are still more similar to the permanent implants, due to the slow corrosion process and various methods to overcome this issue have been tried. Porosity and its relation to material structures, mechanical properties, degradation behaviour, magnetic properties, and fabrication technologies, as well as methods of numerical simulations as a supporting tool have been elaborated. Porous structures represent one way to enhance corrosion, while maintaining intact other necessary properties of the biomaterial. Economic impact of the biomaterials sector in general is significant and justifies large investments in research. Iron-based materials for degradable implants are not in clinical practice yet, but the research results achieved so far promise the future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexy RD, Levi DS (2013) Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. Biomed Res Int 2013:137985. doi:10.1155/2013/137985 Epub 2013

    Article  Google Scholar 

  • Andani MT, Moghaddam NS, Haberland C et al (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater 10:4058–4070

    Article  Google Scholar 

  • Bannwarth MB, Ebert S, Lauck M et al (2014) Tailor-made nanocontainers for combined magnetic-field-induced release and MRI. Macromol Biosci 14:1205–1214

    Article  Google Scholar 

  • Bantsis G, Betsiou M, Bourliva A et al (2012) Synthesis of porous iron oxide ceramics using greek wooden templates and mill scale waste for EMI applications. Ceram Int 38:721–729

    Article  Google Scholar 

  • Bartosch M, Peters H, H-Ici DO et al (2014) Different approaches for in vivo testing of absorbable metals in blood vessels. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014

    Google Scholar 

  • Blackhear JL, O’Callaghan WG, Califf RM (1987) Medical approaches to prevention of restenosis after coronary angioplasty. J Am Coll Cardiol 9:834–848

    Article  Google Scholar 

  • Blank VD, Estrin EI (2014) Chapter 5: phase transformations in iron and its alloys at high pressure. In: Phase transitions in solids under high pressure. CRC Press, Taylor & Francis Group, Boca Raton, pp 166–190

    Google Scholar 

  • Bogachev IN, Zvigintseva GY, Chumakova LD (1975) Influence of the magnetic transformation of austenite on the fine structure of iron-manganese alloys. Phys Met Metallogr 39:96–101

    Google Scholar 

  • Brodie B, Pokharel Y, Fleishman N et al (2011) Very late stent thrombosis after primary percutaneous coronary intervention with bare-metal and drug-eluting stents for st-segment elevation myocardial infarction. J Am Coll Cardiol Intv 4(1):30–38

    Article  Google Scholar 

  • Butscher A, Bohner M, Hofmann S et al (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7:907–920

    Article  Google Scholar 

  • Butscher A, Bohner M, Roth C et al (2012) Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater 8:373–385

    Article  Google Scholar 

  • ÄŒapek J, VojtÄ›ch D (2014) Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy. Mater Sci Eng C 43:494–501

    Article  Google Scholar 

  • Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R Rep 87:1–57

    Article  Google Scholar 

  • Chen Y, Xu Z, Smith C et al (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10:4561–4573

    Article  Google Scholar 

  • Cheng J, Zheng YF (2013) In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. J Biomed Mater Res Part B 101B:485–497

    Article  Google Scholar 

  • Cheng J, Huang T, Zheng YF (2014) Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. J Biomed Mater Res A 102:2277–2287

    Article  Google Scholar 

  • Cheng J, Huang T, Zheng YF (2015) Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays. Mater Sci Eng C 48:679–687

    Article  Google Scholar 

  • Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954

    Article  Google Scholar 

  • Chou D, Wells D, Hong D et al (2013) Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater 9:8593–8603

    Article  Google Scholar 

  • Costa-Mattos HS, Bastos IN, Gomes JACP (2008) A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corros Sci 50:2858–2866

    Article  Google Scholar 

  • Crane NB, Wilkes J, Sachs E et al (2006) Improving accuracy of powder-based SFF processes by metal deposition from a nanoparticle dispersion. Rapid Prototyping J 12:266–274

    Article  Google Scholar 

  • Curodeau A, Sachs E, Caldarise S (2000) Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53:525–535

    Article  Google Scholar 

  • Davis JR (ed) (2000) Corrosion: understanding the basics. ASM International, Materials Park, Ohio, USA, pp 1–20

    Google Scholar 

  • De Santis R, Russo A, Gloria A et al (2015) Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 11:1236–1246

    Article  Google Scholar 

  • Dill T (2008) Contraindications to magnetic resonance imaging. Heart 94:943–948

    Article  Google Scholar 

  • Djurovic D, Hallstedt B, von Appenb J et al (2011) Thermodynamic assessment of the Fe–Mn–C system. Calphad 35:479–491

    Article  Google Scholar 

  • Driscoll P (2009) http://mediligence.com/blog/2009/01/30/orthopedic-biomaterials-market-growth-strongest-in-us/

  • Drynda A, Hassel T, Bach FW et al (2015) In vitro and in vivo corrosion properties of new iron–manganese alloys designed for cardiovascular applications. J Biomed Mater Res Part B 103B:649–660

    Article  Google Scholar 

  • Erbel R, Di Mario C, Bartunek J et al (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial, PROGRESS-AMS (clinical performance and angiographic results of coronary stenting with absorbable metal stents). Lancet 369(9576):1869–1875

    Article  Google Scholar 

  • Fagali NS, Grillo CA, Puntarulo S et al (2014) Evaluation of cell damage produced by Fe ions released as degradation products of biomaterials. Influence of pH changes. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014

    Google Scholar 

  • Fagali NS, Grillo CA, Puntarulo S et al (2015) Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products. Colloids Surf B 128:480–488

    Article  Google Scholar 

  • Fang G, Ai W, Leeflang S et al (2013) Multipass cold drawing of magnesium alloy minitubes for biodegradable vascular stents. Mater Sci Eng C 33:3481–3488

    Article  Google Scholar 

  • Farack J, Wolf-Brandstetter C, Glorius S et al (2011) The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material. Mater Sci Eng B 176:1767–1772

    Article  Google Scholar 

  • Farooq V, Gogas BD, Serruys PW (2011) Restenosis. Delineating the numerous causes of drug-eluting stent restenosis, contemporary reviews in interventional cardiology. Circulation 4:195–205

    Google Scholar 

  • Feng Q, Zhang D, Xin C et al (2013) Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent. J Mater Sci Mater Med 24:713–724

    Article  Google Scholar 

  • Francis A, Yang Y, Virtanen S et al (2015) Iron and iron-based alloys for temporary cardiovascular applications. J Mater Sci Mater Med 26:138

    Article  Google Scholar 

  • Gastaldia D, Sassia V, Petrinia L et al (2011) Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J Mech Behav Biomed Mater 4:352–365

    Article  Google Scholar 

  • Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  Google Scholar 

  • Geis-Gerstorfer J, Schille Ch, Schweizer E et al (2011) Blood triggered corrosion of magnesium alloys. Mater Sci Eng B 176(20):1761–1766

    Article  Google Scholar 

  • Gkouvatsos K, Papanikolaou G, Pantopoulos K (2012) Regulation of iron transport and the role of transferrin. Biochim Biophys Acta 1820:188–202

    Article  Google Scholar 

  • Glorius S, Nies B, Farack J et al (2011) Metal foam—bone cement composites mechanical and biological properties and perspectives for bone implant design. Adv Eng Mater 13:1019–1023

    Article  Google Scholar 

  • Gorkunov ES, Gladkovskii SV, Zadvorkin SM et al (2008) Evolution of magnetic properties of Fe–Mn and Fe–Mn–Cr steels with different stability of austenite during plastic deformation. Phys Metals Metallography 105(4):343–350

    Google Scholar 

  • Grabke HJ, Hennesen K, Möller R et al (1987) Effects of manganese on the grain boundary segregation, bulk and grain boundary diffusivity of P in ferrite. Scr Metall 21:1529–1534

    Article  Google Scholar 

  • Grogan JA, O’Brien BJ, Leen SB et al (2011) A corrosion model for bioabsorbable metallic stents. Acta Biomater 7:3523–3533

    Article  Google Scholar 

  • Grogan JA, Leen SB, McHugh PE (2014) A physical corrosion model for bioabsorbable metal stents. Acta Biomater 10:2313–2322

    Article  Google Scholar 

  • Hänzi AC, Gerber I, Schinhammer M et al (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater 6:1824–1833

    Article  Google Scholar 

  • Harjanto S, Pratesa Y, Prasetyo Y et al (2013) Properties of Fe-Mn-C alloy as degradable biomaterials candidate for coronary stent. Adv Mater Res 789:210–214

    Article  Google Scholar 

  • Heiden M, Walker E, Nauman E et al (2015a) Evolution of novel bioresorbable iron–manganese implant surfaces and their degradation behaviors in vitro. J Biomed Mater Res Part A 103A:185–193

    Article  Google Scholar 

  • Heiden M, Kustas A, Chaput K et al (2015b) Effect of microstructure and strain on the degradation behavior of novel bioresorbable iron–manganese alloy implants. J Biomed Mater Res Part A 103A:738–745

    Article  Google Scholar 

  • Henderson SE, Verdelis K, Maiti S et al (2014) Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater 10:2323–2332

    Article  Google Scholar 

  • Hermawan H (2012) Biodegradable metals, from concept to applications. Springer briefs in materials. Springer, Heidelberg

    Google Scholar 

  • Hermawan H, Mantovani D (2013) Process of prototyping coronary stents from biodegradable Fe–Mn alloys. Acta Biomater 9:8585–8592

    Article  Google Scholar 

  • Hermawan H, Dube D, Mantovani D (2007) Development of degradable Fe-35Mn alloy for biomedical application. Adv Mater Res 15:107–112

    Article  Google Scholar 

  • Hermawan H, Dube D, Mantovani D (2008a) Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res A 93(1):1–11

    Google Scholar 

  • Hermawan H, Alamdari H, Mantovani D et al (2008b) Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 51(1):38–45

    Article  Google Scholar 

  • Hermawan H, Dube D, Mantovani D (2010a) Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A 93:1–11

    Google Scholar 

  • Hermawan H, Purnama A, Dube D, Couet J, Mantovani D (2010b) Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 6:1852–1860

    Article  Google Scholar 

  • Hermawan H, Ramdan D, Djuansjah JRP (2011) Metals for biomedical applications. In: Fazel R (ed) Biomedical engineering—from theory to applications, InTech, www.intechopen.com. pp 1–20

  • Higuera GA, Hendriks JAA, van Dalum J et al (2013) In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integr Biol (Camb) 5:889–898

    Article  Google Scholar 

  • Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8(7):2442–2455

    Article  Google Scholar 

  • Hort N, Wiese B, Wolff M et al (2014) Stiffness of metals, alloys and components. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014

    Google Scholar 

  • Huang W (1987) An assessment of the Fe-Mn system. Calphad 2:183–186

    Google Scholar 

  • Huang W (1989) An assessment of the Fe-Mn system. Calphad 13:243–252

    Article  Google Scholar 

  • Huang T, Cheng J, Zheng YF (2014) In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Mater Sci Eng C 35:43–53

    Article  Google Scholar 

  • Huang T, Cheng J, Bian D et al (2015) Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33389

    Google Scholar 

  • Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  Google Scholar 

  • Hyun S-K, Ikeda T, Nakajima H (2004) Fabrication of lotus-type porous iron and its mechanical properties. Sci Technol Adv Mater 5:201–205

    Article  Google Scholar 

  • Ishikawa Y, Endoh Y (1968) Antiferromagnetism of γ-FeMn alloys. J Appl Phys 39:1318–1319

    Article  Google Scholar 

  • Jayalekshmi AC, Victor SP, Sharma CP (2013) Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids Surf B 101:196–204

    Article  Google Scholar 

  • Kashef S, Asgari A, Hilditch TB et al (2013) Fracture mechanics of stainless steel foams. Mater Sci Eng A 578:115–124

    Article  Google Scholar 

  • Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. In: Siegel A, Siegel H (eds) Manganese and its role in biological proceses. Marcel Dekker, New York, pp 89–121

    Google Scholar 

  • Kini U, Nandeesh BN (2012) Physiology of bone formation, remodeling, and metabolism. In: Fogelman I et al (eds) Radionuclide and hybrid bone imaging. Springer, Berlin, p 43

    Google Scholar 

  • Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936

    Article  Google Scholar 

  • Kubaschewski O (1982) Iron—binary phase diagrams. Springer, Berlin, pp 61–63

    Google Scholar 

  • Lee BJ, Lee DN (1989) A thermodynamic study on the Mn-C and Fe-Mn systems. Calphad 4: 345–354

    Google Scholar 

  • Li N, Zheng Y (2013) Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 29(6):489–502

    Article  Google Scholar 

  • Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24:414–422

    Article  Google Scholar 

  • Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466

    Article  Google Scholar 

  • Lintzen S, von Appen J, Hallstedt B et al (2013) The Fe–Mn enthalpy phase diagram from first principles. J Alloy Compd 577:370–375

    Article  Google Scholar 

  • Liu B, Zheng Y (2011) Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 7:1407–1420

    Article  Google Scholar 

  • Liu Z, Fan T, Zhang W et al (2005) The synthesis of hierarchical porous iron oxide with wood templates. Microporous Mesoporous Mater 85:82–88

    Article  Google Scholar 

  • Liu B, Zheng Y, Ruan L (2010) In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 65:540–543

    Article  Google Scholar 

  • Long J, Laughlin DE, McHenry ME (2008) Structural and soft magnetic properties of a new Fe-Zr soft magnetic nanocrystalline alloy. J Appl Phys 103:07E708

    Article  Google Scholar 

  • Melican M, Zimmerman M, Dhillon M et al (2001) Three-dimensional printing and porous metallic surfaces: a new orthopedic application. J Biomed Mater Res 55:194–202

    Article  Google Scholar 

  • Moravej M, Mantovani D (2011) Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci 12:4250–4270

    Article  Google Scholar 

  • Moravej M, Prima F, Fiset M, Mantovani D et al (2010a) Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Acta Biomater 6:1726–1735

    Article  Google Scholar 

  • Moravej M, Purnama A, Fiset M et al (2010b) Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater 6:1843–1851

    Article  Google Scholar 

  • Moravej M, Amira S, Prima F et al (2011) Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents. Mater Sci Eng B 176:1812–1822

    Article  Google Scholar 

  • Moszner F, Sologubenko AS, Schinhammer M et al (2011) Precipitation hardening of biodegradable Fe–Mn–Pd alloys. Acta Mater 59:981–991

    Article  Google Scholar 

  • Mouzou E, Paternoster C, ToloueiR et al (2014) A comparative study of the degradation of pure Fe and Fe-20Mn-1.2C alloy in modified Hanks’ solution for biodegradable cardiovascular device. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014

    Google Scholar 

  • Mueller PP, May T, Perz A et al (2006) Control of smooth muscle cell proliferation by ferrous iron. Biomaterials 27:2193–2200

    Article  Google Scholar 

  • Murakami T, Ohara K, Narushima T et al (2007) Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Mater Trans 48:2937–2944

    Article  Google Scholar 

  • Nasution AK, Murni NS, Sing NB et al (2015) Partially degradable friction-welded pure iron–stainless steel 316L bone pin. J Biomed Mater Res Part B 103B:31–38

    Article  Google Scholar 

  • Neacsu P, Ion RN, Mitran V et al (2015) State of the art and recent patents on Mg-based biodegradable bone implants. Recent Pat Regenerative Med 4(3):168–188

    Article  Google Scholar 

  • Nie FL, Zheng YF, Wei SC et al (2010) In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 5:1843–1851

    Article  Google Scholar 

  • Niendorf T, Brenne F, Hoyer P et al (2015) Processing of new materials by additive manufacturing iron-based alloys containing silver for biomedical applications. Metall Mater Trans A 46:2829–2833

    Article  Google Scholar 

  • Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Article  Google Scholar 

  • Obayi CS, Tolouei R, Paternoster C et al (2015) Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants. Acta Biomater 17:68–77

    Article  Google Scholar 

  • Orinak A, Orinakova R, Kralova ZO et al (2014) Sintered metallic foams for biodegradable bone replacement materials. J Porous Mater 21:131–140

    Article  Google Scholar 

  • Orinakova R, Orinak A, Kupkova M et al (2015) Study of electrochemical deposition and degradation of hydroxyapatite coated iron biomaterials. Int J Electrochem Sci 10:659–670

    Google Scholar 

  • Peatman B (2015) Biotech funding update. http://cirtecmed.com/biotech-funding-update/

  • Peck M, Dusserre N, McAllister TN et al (2011) Tissue engineering by self-assembly. Mater Today 14:218–224

    Article  Google Scholar 

  • Pepperhoff W, Acet M (2001) Constitution and magnetism of iron and its alloys. Springer, Berlin

    Book  Google Scholar 

  • Persaud-Sharma D, McGoron A (2012) Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng 12:25–39

    Article  Google Scholar 

  • Peuster M, Wohlsein P, Brugmann M et al (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569

    Article  Google Scholar 

  • Peuster M, Hesse C, Schloo T et al (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962

    Article  Google Scholar 

  • Pierson D, Edick J, Tauscher A et al (2012) A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res Part B 100B:58–67

    Article  Google Scholar 

  • Purnama A, Hermawan H, Couet J et al (2010) Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater 6:1800–1807

    Article  Google Scholar 

  • Purnama A, Hermawan H, Champetier S et al (2013) Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomater 9:8746–8753

    Article  Google Scholar 

  • Quadbeck P, Hauser R, Kümmel K et al (2010) Iron based cellular metals for degradable synthetic bone replacement. In: Proceedings of powder metallurgy world congress & exhibition. PM2010, Florence, Italy 10–14 Oct 2010, vol 4. pp 95–102

    Google Scholar 

  • Quadbeck P, Kümmel K, Hauser R et al (2011) Structural and material design of open-cell powder metallurgical foams. Adv Eng Mater 13:1024–1030

    Article  Google Scholar 

  • Quadbeck P, Redlich C, Göhler H et al (2014) Methodical screening of corrosion mechanisms of iron alloys for the manipulation of degradation rates. In: Abstract book of the 6th symposium on biodegradable metals, Maratea, Italy, 24–29 Aug 2014

    Google Scholar 

  • Rabinkin A (1979) On magnetic contributions to γ → ε phase transformations in Fe-Mn alloys. Calphad 3:77–84

    Article  Google Scholar 

  • Ratner BD (2004) Biomaterials tutorial. An introduction to biomaterials. http://www.uweb.engr.washington.edu/research/tutorials/introbiomat.html

  • Reindl A, Borowsky R, Hein SB et al (2014) Degradation behavior of novel Fe/ß-TCP composites produced by powder injection molding for cortical bone replacement. J Mater Sci 49:8234–8243

    Article  Google Scholar 

  • Russo T, D’Amora U, Gloria A et al (2013) Systematic analysis of injectable materials and 3D rapid prototyped magnetic scaffolds: from CNS applications to soft and hard tissue repair/regeneration. Procedia Eng 59:233–239

    Article  Google Scholar 

  • Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670

    Article  Google Scholar 

  • Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635

    Article  Google Scholar 

  • Sanchez AHM, Luthringer BJC, Feyerabend F et al (2015) Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? a review. Acta Biomaterialia 13(2015):16–31

    Article  Google Scholar 

  • Schaffer JE, Nauman EA, Stanciu LA (2012) Cold-drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of mechanical strength and fatigue durability. Metall Mater Trans B 43B:984–994

    Article  Google Scholar 

  • Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer P (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713

    Article  Google Scholar 

  • Schinhammer M, Gerber I, Hänzi AC et al (2012) Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C(–Pd) TWIP alloys. Acta Mater 60:2746–2756

    Article  Google Scholar 

  • Schinhammer M, Steiger P, Moszner F et al (2013a) Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys. Mater Sci Eng C 33:1882–1893

    Article  Google Scholar 

  • Schinhammer M, Gerber I, Hänzi AC et al (2013b) On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng C 33:782–789

    Article  Google Scholar 

  • Schomig A, Kastrati A, Mudra H, Blasini R, Schuhlen H, Klauss V, Richardt G, Neumann FJ (1994) Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation 90:2716–2724

    Article  Google Scholar 

  • Serruys PW, Kutryk MJ, Ong AT (2006) Coronary-artery stents. N Engl J Med 354:483–495

    Article  Google Scholar 

  • Sing NB, Mostavan A, Hamzah E et al (2015) Degradation behavior of biodegradable Fe35Mn alloy stents. J Biomed Mater Res Part B 103B:572–577

    Article  Google Scholar 

  • Stephani G, Andersen O, Quadbeck P et al (2010) Cellular metals for functional applications—an overview. In: Proceedings of powder metallurgy world congress & exhibition. PM2010, Florence, Italy 10–14 Oct 2010, vol 4. pp 95–102

    Google Scholar 

  • Sua X, Tang NY, Toguri JM (2001) Thermodynamic evaluation of the Fe–Zn system. J Alloy Compd 325:129–136

    Article  Google Scholar 

  • Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66

    MathSciNet  Google Scholar 

  • Tampieri A, D’Alessandro T, Sandri M et al (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851

    Article  Google Scholar 

  • Tan L, Yu X, Wan P et al (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29(6):503–513

    Article  Google Scholar 

  • Trinidad J, Marco I, Arruebarrena G et al (2014) Processing of magnesium porous structures by infiltration casting for biomedical applications. Adv Eng Mater 16(2):241–247

    Article  Google Scholar 

  • Ulum MF, Arafat A, Noviana D et al (2014a) In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Mater Sci Eng C 36:336–344

    Article  Google Scholar 

  • Ulum MF, Nasution AK, Yusop AH et al (2014b) Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants. J Biomed Mater Res Part B Appl Biomater 00B. doi:10.1002/jbm.b.33315

  • Ulum MF, Murni NS, Noviana D et al (2014c) Peri-implant assessment of Fe-HA composite for temporary bone implants. Eur Cells Mater 28(3):81

    Google Scholar 

  • Waksman R, Pakala R, Baffour R et al (2008) Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21:15–20

    Article  Google Scholar 

  • Waksman R, Erbel R, Di Mario C et al (2009) Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC: Cardiovasc Interv 2(4):312–320

    Google Scholar 

  • Walker J, Shadanbaz S, Woodfield TBF et al (2014) Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res Part B 102B:1316–1331

    Article  Google Scholar 

  • Wang X, Dong LH, Ma XL, Zheng YF (2013) Microstructure, mechanical property and corrosion behaviors of interpenetrating C/Mg-Zn-Mn composite fabricated by suction casting. Mater Sci Eng C 33:618–625

    Article  Google Scholar 

  • Wegener B, Sievers B, Utzschneider S et al (2011) Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater Sci Eng B 176:1789–1796

    Article  Google Scholar 

  • Willbold E, Gu X, Albert D et al (2015) Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater 11:554–562

    Article  Google Scholar 

  • Witte F, Hort N, Vogt C et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72

    Article  Google Scholar 

  • Wu CZ, Chen SC, Shih YH et al (2011) Development of the novel ferrous-based stainless steel for biomedical applications, Part I: high-temperature microstructure, mechanical properties and damping behavior. J Mech Behav Biomed Mater 4:1548–1553

    Article  Google Scholar 

  • Wu J, Lu X, Tan L et al (2013) Effect of hydrion evolution by polylactic-co-glycolic acid coating on degradation rate of pure iron. J Biomed Mater Res Part B 101B:1222–1232

    Article  Google Scholar 

  • Yabuuchi K, Kasada R, Kimura A (2013) Effect of Mn addition on one-dimensional migration of dislocation loops in body-centered cubic Fe. Acta Mater 61:6517–6523

    Article  Google Scholar 

  • Yang R, Zhao DL, Wang YM et al (2001) Effects of Cr, Mn on the cohesion of the γ-iron grain boundary. Acta Mater 49:1079–1085

    Article  Google Scholar 

  • Yusop AH, Bakir AA, Shaharom NA et al (2012) Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012:1–10

    Article  Google Scholar 

  • Yusop AHM, Daud NM, Nur H et al (2015) Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants. Sci Rep 5:11194. doi:10.1038/srep11194

    Article  Google Scholar 

  • Zberg B, Uggowitzer PJ, Löffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8(11):887–891

    Article  Google Scholar 

  • Zhang YS, Zhu XM, Zhong SH (2004) Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe–Mn base alloys in various aqueous solutions. Corros Sci 46:853–876

    Article  Google Scholar 

  • Zhang EL, Chen HY, Shen F et al (2010) Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med 21:2151–2163

    Article  Google Scholar 

  • Zhen Z, Xi TF, Zheng YF (2013) A review on in vitro corrosion performance test of biodegradable metallic materials. Trans Nonferrous Met Soc China 23:2283–2293

    Article  Google Scholar 

  • Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R Rep 77:1–34

    Article  Google Scholar 

  • Zhu S, Huang N, Xu L et al (2009) Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Technol 203:1523–1529

    Article  Google Scholar 

  • Zivic F, Babic M, Grujovic N et al (2012) Effect of vacuum-treatment on deformation properties of PMMA bone cement. J Mech Behav Biomed Mater 5:129–138

    Article  Google Scholar 

  • Zivic F, Babic M, Grujovic N et al (2013) Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopaedic AISI 316LVM stainless steel during reciprocating sliding. Wear 300:65–77

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the 2014-SGR-1015 project from the Generalitat de Catalunya, and the MAT2014-57960-C3-1-R (co-financed by the Fondo Europeo de Desarrollo Regional, FEDER) and SELECTA H2020-MSCA-ITN-2014 no. 642642 project and part of the project III41017—(Virtual Human Osteoarticular System and its Application in Preclinical and Clinical Practice which is sponsored by the Ministry of Education, Science and Technological Development of the Republic of Serbia for the period of 2011–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Zivic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zivic, F. et al. (2018). Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics