Skip to main content

Advertisement

Log in

Cold-Drawn Bioabsorbable Ferrous and Ferrous Composite Wires: An Evaluation of Mechanical Strength and Fatigue Durability

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Yield strengths exceeding 1 GPa with elastic strains exceeding 1 pct were measured in novel bioabsorbable wire materials comprising high-purity iron (Fe), manganese (Mn), magnesium (Mn), and zinc (Zn), which may enable the development of self-expandable, bioabsorbable, wire-based endovascular stents. The high strength of these materials is attributed to the fine microstructure and fiber textures achieved through cold drawing techniques. Bioabsorbable vascular stents comprising nutrient metal compositions may provide a means to overcome the limitations of polymer-based bioabsorbable stents such as excessive strut thickness and poor degradation rate control. Thin, 125-μm wires comprising combinations of ferrous alloys surrounding a relatively anodic nonferrous core were manufactured and tested using monotonic and cyclic techniques. The strength and durability properties are tested in air and in body temperature phosphate-buffered saline, and then they were compared with cold-drawn 316L stainless steel wire. The antiferromagnetic Fe35Mn-Mg composite wire exhibited more than 7 pct greater elasticity (1.12 pct vs 1.04 pct engineering strain), similar fatigue strength in air, an ultimate strength of more than 1.4 GPa, and a toughness exceeding 35 mJ/mm3 compared with 30 mJ/mm3 for 316L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Waksman: J. Invasive Cardiol., 2006, vol. 18, no. 2, pp. 70–75.

    Google Scholar 

  2. M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf: Br. Med. J., 2001, vol. 86, no. 5, pp. 563–670.

    CAS  Google Scholar 

  3. H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata: Circulation, 2000, vol. 102, no. 4, pp. 399–403.

    Article  CAS  Google Scholar 

  4. M. Vorpahl, R. Virmani, E. Ladich, and A.V. Finn: Minerva Cardioangiol., 2009, vol. 57, no. 5, pp. 621–28.

    CAS  Google Scholar 

  5. M. Puato, C. Piergentili, M. Zanardo, R. Rocchi, M. Giordan, P. Cardaioli, and P. Pauletto: Angiology, 2007, vol. 58, no. 5, pp. 565–71.

    Article  CAS  Google Scholar 

  6. M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg: Biomaterials, 2006, vol. 27, no. 28, pp. 4955–62.

    Article  CAS  Google Scholar 

  7. H. Hermawan, H. Alamdari, D. Mantovani, and D. Dube: Powder Metall., 2008, vol. 51, no. 1, pp. 38–45.

    Article  CAS  Google Scholar 

  8. C.M. Bunger, N. Grabow, K. Sternberg, L. Ketner, C. Kroger, B. Lorenzen, K. Hauenstein, K.P. Schmitz, H.J. Kreutzer, D. Lootz, H. Ince, C.A. Nienaber, E. Klar, and W. Schareck: J. Endovasc. Ther., 2006, vol. 13, no. 4, pp. 539–48.

    Article  Google Scholar 

  9. R. Balossino, F. Gervaso, F. Migliavacca, and G. Dubini: J. Biomech., 2008, vol. 41, no. 5, pp. 1053–61.

    Article  Google Scholar 

  10. J. Bedoya: J. Biomech. Eng., 2006, vol. 128, no. 5, pp. 757–65.

    Article  Google Scholar 

  11. A. Colombo and E. Karvouni: Circulation, 2000, vol. 102, no. 4, p. 371.

    Article  CAS  Google Scholar 

  12. J.F. Tanguay, J.P. Zidar, H.R. Phillips, and R.S. Stack: Cardiol. Clin., 1994, vol. 12, no. 4, pp. 699–713.

    CAS  Google Scholar 

  13. R.V. Marrey, R. Burgermeister, R.B. Grishaber, and R.O. Ritchie: Biomaterials, 2006, vol. 27, no. 9, pp. 1988–2000.

    Article  CAS  Google Scholar 

  14. B. O’Brien and W. Carroll: Acta Biomater., 2009, vol. 5, no. 4, pp. 945–58.

    Article  Google Scholar 

  15. D. Stoeckel, A.R. Pelton, and T.W. Duerig: Eur. Radiol., 2004, vol. 14, no. 2, pp. 292–301.

    Article  Google Scholar 

  16. D. Maintz, H. Seifarth, R. Raupach, T. Flohr, M. Rink, T. Sommer, M. Özgün, W. Heindel, and R. Fischbach: Eur. Radiol., 2006, vol. 16, no. 4, pp. 818–26.

    Article  Google Scholar 

  17. FDA Medical Device Database: CDRH Super Search, http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm, 2011.

  18. C.G. Caro, J.M. Fitz-Gerald, and R.C. Schroter: Nature, 1969, pp. 1159–60.

  19. C.G. Caro, J.M. Fitz-Gerald, and R.C. Schroter: P. Roy. Soc. Lond. B, Bio., 1971, vol. 177, no. 1046, pp. 109–33.

    Article  CAS  Google Scholar 

  20. T.W. Duerig and M.H. Wholey: Min. Invasive Ther. Allied Tech., 2002, vol. 11, no. 4, pp. 173–78.

    Article  Google Scholar 

  21. E.W. Donnelly, M.S. Bruzzi, T. Connolley, and P.E. McHugh: Comput. Methods Biomech. Biomed. Eng., 2007, vol. 10, no. 2, pp. 103–10.

    Article  CAS  Google Scholar 

  22. T.W. Duerig, D.E. Tolomeo, and M. Wholey: Minim. Invasive Ther. Allied Tech., 2000, vol. 9, nos. 3 and 4, pp. 235–46.

    CAS  Google Scholar 

  23. N. Duraiswamy, J.M. Cesar, R.T. Schoephoerster, and J.E. Moore: Biorheology, 2008, vol. 45, no. 5, pp. 547–61.

    Google Scholar 

  24. Y. He, N. Duraiswamy, A.O. Frank, and J.E. Moore Jr.: J. Biomech. Eng., 2005, vol. 127, p. 637.

    Article  Google Scholar 

  25. J.E. Schaffer and R. Gordon: SMST-2003: P. Int. Conf. Shape Mem. Superelastic Technol., Asilomar Conference Center, Pacific Grove, CA, 2003, p. 109.

  26. W. Ramberg and W.R. Osgood: National Advisory Committee for Aeronautics, Washington, DC, 1943, Tech. Note No. 902.

  27. E. McLucas, M.T. Moran, Y. Rochev, W.M. Carroll, and T.J. Smith: Endothelium, 2006, vol. 13, no. 1, pp. 35–41.

    Article  CAS  Google Scholar 

  28. W. Zingg, A.W. Neumann, A.B. Strong, O.S. Hum, and D.R. Absolom: Can. J. Surg., 1982, vol. 25, no. 1, pp. 16–19.

    CAS  Google Scholar 

  29. J.E. Schaffer: J. Mater. Eng. Perform, 2009, vol. 18, no. 5, pp. 582–87.

    Article  CAS  Google Scholar 

  30. P. Peralta, L. Lanes, A. Czapka, and C. Laird: Scripta Metall. Mater., 1995, vol. 32, no. 11, pp. 1877–81.

    Article  CAS  Google Scholar 

  31. M. Moravej, F. Prima, M. Fiset, and D. Mantovani: Acta Biomater., 2010, vol. 6, no. 5, pp. 1726–35.

    Article  CAS  Google Scholar 

  32. E. Eisenbarth, P. Linez, V. Biehl, D. Velten, J. Breme, and H.F. Hildebrand: Biomol. Eng., 2002, vol. 19, nos. 2–6, pp. 233–37.

    Article  CAS  Google Scholar 

  33. H. Hermawan, M. Moravej, D. Dubé, M. Fiset, and D. Mantovani: Adv. Mater. Res., 2007, vol. 15, pp. 113–18.

    Article  Google Scholar 

  34. H. Hermawan, D. Dubé, and D. Mantovani: J. Biomed. Mater. Res. A, 2010, vol. 93 (1), pp. 1–11.

    Google Scholar 

  35. M.B. Bever, D.L. Holt, and A.L. Titchener: Progr. Mater. Sci., 1973, vol. 17, p. 190.

    Article  Google Scholar 

  36. M.A. Gibbs, K.T. Hartwig, L.R. Cornwell, R.E. Goforth, and E.A. Payzant: Scripta Mater., 1998, vol. 39, no. 12, pp. 1699–1704.

    Article  CAS  Google Scholar 

  37. W.A. Wood: P. Roy. Soc. Lond. A, Mater., 1939, vol. 172, no. 949, pp. 231–41.

    Article  CAS  Google Scholar 

  38. A.R. Pelton, V. Schroeder, M.R. Mitchell, X.Y. Gong, M. Barney, and S.W. Robertson: J. Mech. Behav. Biomed., 2008, vol. 1, no. 2, pp. 153–64.

    Article  CAS  Google Scholar 

  39. G. Clark and D. Williams: J. Biomed. Mater. Res., 1982, vol. 16, no. 2, pp. 125–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from Fort Wayne Metals Research (Grant No. 8000039480) is gratefully acknowledged. The authors thank P. Irazoqui, E.A. Stach, L.E. Kay, W.S. VanDyke, B. Deorosan, M. Susilo, D.L. Snider, and B. Liechty for technical support and helpful discussions. C. Houle’s help in performing the body temperature fatigue testing during her internship with Fort Wayne Metals R&D is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy E. Schaffer.

Additional information

Manuscript submitted February 15, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaffer, J.E., Nauman, E.A. & Stanciu, L.A. Cold-Drawn Bioabsorbable Ferrous and Ferrous Composite Wires: An Evaluation of Mechanical Strength and Fatigue Durability. Metall Mater Trans B 43, 984–994 (2012). https://doi.org/10.1007/s11663-012-9661-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9661-3

Keywords

Navigation