Skip to main content

Advertisement

Log in

Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biocorrosion properties and blood- and cell compatibility of pure iron were studied in comparison with 316L stainless steel and Mg–Mn–Zn magnesium alloy to reveal the possibility of pure iron as a biodegradable biomaterial. Both electrochemical and weight loss tests showed that pure iron showed a relatively high corrosion rate at the first several days and then decreased to a low level during the following immersion due to the formation of phosphates on the surface. However, the corrosion of pure iron did not cause significant increase in pH value to the solution. In comparison with 316L and Mg–Mn–Zn alloy, the pure iron exhibited biodegradable property in a moderate corrosion rate. Pure iron possessed similar dynamic blood clotting time, prothrombin time and plasma recalcification time to 316L and Mg–Mn–Zn alloy, but a lower hemolysis ratio and a significant lower number density of adhered platelets. MTT results revealed that the extract except the one with 25% 24 h extract actually displayed toxicity to cells and the toxicity increased with the increasing of the iron ion concentration and the incubation time. It was thought there should be an iron ion concentration threshold in the effect of iron ion on the cell toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Hench LL. Biomaterials. Science. 1980;208(4446):826–31.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226(4675):630–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588–95.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Song GL, Song SZ. A possible biodegradable magnesium implant material. Adv Eng Mater. 2007;9(4):298–302.

    Article  CAS  Google Scholar 

  6. Yang SL, Wu ZH, Yang W, Yang MB. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test. 2008;27(8):957–63.

    Article  CAS  MathSciNet  Google Scholar 

  7. Paragkumar NT, Dellacherie E, Six JL. Surface characteristics of PLA and PLGA films. Appl Surf Sci. 2006;253(5):2758–64.

    Article  ADS  CAS  Google Scholar 

  8. Cai KY, Yao KD, Yang ZM, Li XQ. Surface modification of three-dimensional poly(d, l-lactic acid) scaffolds with baicalin: a histological study. Acta Biomater. 2007;3(4):597–605.

    Article  CAS  PubMed  Google Scholar 

  9. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J of Pharm. 2001;221(1–2):1–22.

    Article  CAS  Google Scholar 

  10. Liu SJ, Chi PS, Lin SS, Ueng SW, Chan EC, Chen JK. Novel solvent-free fabrication of biodegradable poly-lactic-glycolic acid (PLGA) capsules for antibiotics and rhBMP-2 delivery. Int J of Pharm. 2007;330(1–2):45–53.

    Article  CAS  Google Scholar 

  11. Gu XN, Zheng YF, Cheng Y, Zhong SP, Xi TF. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–98.

    Article  CAS  PubMed  Google Scholar 

  12. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  CAS  PubMed  Google Scholar 

  13. Okuma T. Magnesium and bone strength. Nutrition. 2001;17(7–8):679–80.

    Article  CAS  PubMed  Google Scholar 

  14. Saber-Samandari S, Gross KA. Micromechanical properties of single crystal hydroxyapatite by nanoindentation. Acta Biomater. In press. doi: 10.1016/j.actbio.2009.02.009.

  15. Rack HJ, Qazi JI. Titanium alloys for biomedical application. Mater Sci Eng: C. 2006;26(8):1269–77.

    Article  CAS  Google Scholar 

  16. Yang Z, Li JP, Zhang JX, Lorimer GW, Robson J. Review on research and development of magnesium alloys. Acta Metall Sinica. 2008;21(5):313–28.

    Article  CAS  Google Scholar 

  17. Choi JW, Kong YM, Kim HE, Lee IS. Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3. J Am Ceram Soc. 1998;81(7):1743–8.

    Article  CAS  Google Scholar 

  18. Hassan SF, Gupta M. Development of a novel magnesium–copper based composite with improved mechanical properties. Mater Res Bull. 2002;37(2):377–89.

    Article  CAS  Google Scholar 

  19. Cheung HY, Lau KT, Tao XM, Hui D. A potential material for tissue engineering: silkworm silk/PLA biocomposite. Compos Part B: Eng. 2008;39(6):1026–33.

    Article  CAS  Google Scholar 

  20. Tian WS. A study of pure iron machinability. J Taiyuan Heavy Mach Inst. 1990;2:18–24.

    Google Scholar 

  21. Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Aspects Med. 2001;22(1–2):1–87.

    Article  CAS  PubMed  Google Scholar 

  22. Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D, Bandyopadhyay NR. Nanoindentation study of microplasma sprayed hydroxyapatite coating. Ceram Int. 2009;35(6):2295–304.

    Article  CAS  Google Scholar 

  23. Boldt DH. New perspectives on iron: an introduction. Am J Med Sci. 1999;318(4):207–12.

    Article  CAS  PubMed  Google Scholar 

  24. Harhaji L, Vuckovic O, Miljkovic D, Stosic-Grujicic S, Trajkovic V. Iron down-regulates macrophage anti-tumour activity by blocking nitric oxide production. Clin Exp Immunol. 2004;137(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  25. Jones DT, Trowbridge IS, Harris AL. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate. Cancer Res. 2006;66(5):2749–56.

    Article  CAS  PubMed  Google Scholar 

  26. Arredondo M, Nunez MT. Iron and copper metabolism. Mol Aspects Med. 2005;26:313–27.

    Article  CAS  PubMed  Google Scholar 

  27. Siah CW, Trinder D, Olynyk JK. Iron overload. Clin Chim Acta. 2005;358(1–2):24–36.

    Article  CAS  PubMed  Google Scholar 

  28. Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogl S, et al. The lipid peroxidation end product 4-hydroxy-2, 3-nonenal up-regulates transforming growth factor beta 1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. Faseb J. 1997;11(11):851–7.

    CAS  PubMed  Google Scholar 

  29. Eaton JW, Qian MW. Molecular bases of cellular iron toxicity. Free Radic Biol Med. 2002;32(9):833–40.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu SF, Huang N, Xu L, Zhang Y, Liu H, Sun H, et al. Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Mater Sci Eng: C. 2009;29(5):1589–92.

    Article  CAS  Google Scholar 

  31. Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol. 2008;21(1):15–20.

    Article  PubMed  Google Scholar 

  32. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27(28):4955–62.

    Article  CAS  PubMed  Google Scholar 

  33. Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001;86(5):563–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang EL, Yin DS, Xu LP, Yang L, Yang K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng: C. 2009;29(3):987–93.

    CAS  Google Scholar 

  35. ASTM-G31-72: standard practice for laboratory immersion corrosion testing of metals. Annual book of ASTM standards. Philadelphia, PA, USA: Am Soc Test and Mater. 2004.

  36. ISO-8407: corrosion of metals and alloys-removal of corrosion products from corrosion test specimens. International Standard Organization; 1991.

  37. Singhal JP, Ray AR. Synthesis of blood compatible polyamide block copolymers. Biomaterials. 2002;23(4):1139–45.

    Article  CAS  PubMed  Google Scholar 

  38. ISO-10993–5. Biological evaluation of medical devices—part 5: tests for cytotoxicity: in vitro methods. Arlington: ANSI/AAMI; 1999.

    Google Scholar 

  39. ISO-10993–12. Biological evaluation of medical devices—part 12: sample preparation and reference materials. Arlington: ANSI/AAMI; 2002.

    Google Scholar 

  40. Zhang KM, Yang DZ, Zou JX, Dong C. Surface modification of 316L stainless steel by high current pulsed electron beam II. Corrosion behaviors in the simulated body fluid. Acta Metall Sinica. 2007;43(1):71–6.

    Google Scholar 

  41. ISO-10993–4. Biological evaluation of medical devices—part 4: selection of tests for interactions with blood. Arlington: ANSI/AAMI; 1999.

    Google Scholar 

  42. Khan W, Kapoor M, Kumar N. Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility. Acta Biomater. 2007;3(4):541–9.

    Article  CAS  PubMed  Google Scholar 

  43. Yang HJ, Yang K, Zhang BC. Study of in vitro anticoagulant property of the La added medical 316L stainless steel. Acta Metall Sinica. 2006;42:959–64.

    CAS  Google Scholar 

  44. Yang L, Zhang EL. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng: C. 2009;29(5):1691–6.

    CAS  Google Scholar 

  45. Xu L, Zhang E, Yin D, Zeng S, Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci. 2008;19(3):1017–25.

    Google Scholar 

  46. Xu LP, Zhang EL, Yang K. Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application. J Mater Sci. 2009;20(4):859–67.

    CAS  Google Scholar 

  47. Li GY, Niu LY, Lian JS, Jiang ZG. A black phosphate coating for C1008 steel. Surf Coat Technol. 2004;176(2):215–21.

    Article  CAS  Google Scholar 

  48. Xu CC, Yue LJ, Ouyang WZ. Corrosion mechanisms and desalination treatments of nlarine iron artifacts. Sci Conserv Archaeol. 2005;17(3):55–9.

    Google Scholar 

  49. Zhang Z, Liang YW. Corrosion behavior of iron in sodium chloride solutions with different pH value. Corros Sci Prot Technol. 2008;20(4):260–4.

    CAS  Google Scholar 

  50. Song GL. Control of biodegradation of biocompatible magnesium alloys. Corros Sci. 2007;49(4):1696–701.

    Article  CAS  Google Scholar 

  51. Vogler EA, Siedlecki CA. Contact activation of blood-plasma coagulation. Biomaterials. 2009;30(10):1857–69.

    Article  CAS  PubMed  Google Scholar 

  52. Triplett DA. Coagulation and bleeding disorders: review and update. Clin Chem. 2000;46(8B):1260–9.

    CAS  PubMed  Google Scholar 

  53. Ouared R, Chopard B, Stahl B, Renacht DA, Yilmaz H, Courbebaisse G. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Comput Phys Commun. 2008;179(1–3):128–31.

    Article  CAS  ADS  Google Scholar 

  54. Nurden AT. Platelets and tissue remodeling: extending the role of the blood clotting system. Endocrinology. 2007;148(7):3053–5.

    Article  PubMed  CAS  Google Scholar 

  55. Yang J, Mori K, Li JY, Barasch J. Iron, lipocalin, and kidney epithelia. Am J Physiol-Ren Physiol. 2003;285(1):9–18.

    Google Scholar 

  56. Anderson GJ. Mechanisms of iron loading and toxicity. Am J Hematol. 2007;82(12):1128–31.

    Article  CAS  PubMed  Google Scholar 

  57. Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem. 2002;91(7):652–67.

    Google Scholar 

  58. Lill R, Dutkiewicz R, Elsasser HP, Hausmann A, Netz DJA, Pierik AJ, et al. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta-Mol Cell Res. 2006;1763(7):652–67.

    Article  CAS  Google Scholar 

  59. Ma YX, Yeh M, Yeh KY, Glass J. Iron imports. V. transport of iron through the intestinal epithelium. Am J Physiol-Gastroint Liver Physiol. 2006;290(3):417–22.

    Article  CAS  Google Scholar 

  60. Buckett PD, Wessling-Resnick M. Small molecule inhibitors of divalent metal transporter-1. Am J Physiol-Gastroint Liver Physiol. 2009;296(4):798–804.

    Article  CAS  Google Scholar 

  61. Binet JL. Human iron metabolism—discussion. Bull Acad Natl Med. 2005;189(8):1647.

    Google Scholar 

  62. Hershko C. Mechanism of iron toxicity. Food Nutr Bull. 2007;28(4):500–9.

    Google Scholar 

  63. Kolnagou A, Michaelides Y, Kontos C, Kyriacou K, Kontoghiorghes GJ. Myocyte damage and loss of myofibers is the potential mechanism of iron overload toxicity in congestive cardiac failure in thalassemia. Complete reversal of the cardiomyopathy and normalization of iron load by deferiprone. Hemoglobin. 2008;32(1–2):17–28.

    Article  CAS  PubMed  Google Scholar 

  64. Britton RS, Leicester KL, Bacon BR. Iron toxicity and chelation therapy. Int J Hematol. 2002;76(3):219–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of the authors (Erlin Zhang) would like to acknowledge the financial support from the Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang Science and Technology Institute (Program No. 1062109-1-100), and Heilongjiang Provincial Nature Science Fund (No. E2007-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, E., Chen, H. & Shen, F. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci: Mater Med 21, 2151–2163 (2010). https://doi.org/10.1007/s10856-010-4070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4070-0

Keywords

Navigation