Skip to main content

Effects of Oxidative Stress, Hyperglycemia, and Hypercholesterolemia on Membrane Structural Organization and the Interactions of Omega-3 Fatty Acids

  • Chapter
  • First Online:
Membrane Organization and Dynamics

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 20))

Abstract

Cellular membranes are dynamic structures that play a critical role in facilitating and maintaining cell function. Membrane structure and fluidity are dependent on relative lipid (including cholesterol) and protein levels, which are known to change with aging and in different disease processes. The plasma membrane is organized into microdomains that have distinct biophysical and biochemical characteristics that mediate specific cellular activities. Lipid rafts, for example, sequester a variety of important intracellular signaling proteins and directly regulate their activity. In response to changes in membrane structure, some proteins can migrate between lipid-disordered, cholesterol-poor membrane regions and lipid-ordered, cholesterol-rich domains to differentially affect intracellular signaling. Cholesterol crystalline domains have been observed to form in vascular cells and in various membrane model systems when exposed to disease-like perturbations, including oxidative stress, hyperglycemia, and hypercholesterolemia. Membrane cholesterol enrichment and domain formation is believed to precipitate extracellular changes, such as crystal deposition in the atheroma with subsequent plaque destabilization and thrombus formation. Marine-derived long chain polyunsaturated omega-3 fatty acids have been shown to affect membrane lipid structure and fluidity. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have potent antioxidant effects in model membranes and human lipoproteins, but the sustainability of these effects appear to vary under certain conditions, and EPA and DHA seem to differentially affect membrane fluidity, cholesterol domain formation, and membrane function. In this chapter, we will discuss how disease-like conditions induce structural changes to the cell membrane that negatively affect cellular function and potentiate the atherogenic process, as well as how lipid components within the membrane may alter these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol. 2007;18(5):608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50.

    Article  CAS  PubMed  Google Scholar 

  3. Fu C, He J, Li C, Shyy JY, Zhu Y. Cholesterol increases adhesion of monocytes to endothelium by moving adhesion molecules out of caveolae. Biochim Biophys Acta. 2010;1801(7):702–10.

    Article  CAS  PubMed  Google Scholar 

  4. Mason RP, Jacob RF. Membrane microdomains and vascular biology: emerging role in atherogenesis. Circulation. 2003;107(17):2270–3.

    Article  PubMed  Google Scholar 

  5. Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch. 2010;459(6):807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mason RP, Walter MF, Day CA, Jacob RF. Active metabolite of atorvastatin inhibits membrane cholesterol domain formation by an antioxidant mechanism. J Biol Chem. 2006;281(14):9337–45.

    Article  CAS  PubMed  Google Scholar 

  7. Tulenko TN, Chen M, Mason PE, Mason RP. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res. 1998;39(5):947–56.

    CAS  PubMed  Google Scholar 

  8. Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rheumatol Rep. 2013;15(3):313.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kellner-Weibel G, Yancey PG, Jerome WG, Walser T, Mason RP, Phillips MC, et al. Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol. 1999;19(8):1891–8.

    Article  CAS  PubMed  Google Scholar 

  10. Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events – a novel insight into plaque rupture by scanning electron microscopy. Scanning. 2006;28(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S, Kovanen PT, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010;5(7):e11765.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dai J, Tian J, Hou J, Xing L, Liu S, Ma L, et al. Association between cholesterol crystals and culprit lesion vulnerability in patients with acute coronary syndrome: an optical coherence tomography study. Atherosclerosis. 2016;247:111–7.

    Article  CAS  PubMed  Google Scholar 

  13. Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39(8):1529–42.

    CAS  PubMed  Google Scholar 

  14. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40(4):405–12.

    Article  CAS  PubMed  Google Scholar 

  15. Bertelsen M, Anggard EE, Carrier MJ. Oxidative stress impairs insulin internalization in endothelial cells in vitro. Diabetologia. 2001;44(5):605–13.

    Article  CAS  PubMed  Google Scholar 

  16. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708–14.

    Article  PubMed  Google Scholar 

  17. Self-Medlin Y, Byun J, Jacob RF, Mizuno Y, Mason RP. Glucose promotes membrane cholesterol crystalline domain formation by lipid peroxidation. Biochim Biophys Acta. 2009;1788(6):1398–403.

    Article  CAS  PubMed  Google Scholar 

  18. Jacob RF, Mason RP. Lipid peroxidation induces cholesterol domain formation in model membranes. J Biol Chem. 2005;280(47):39380–7.

    Article  CAS  PubMed  Google Scholar 

  19. Mason RP, Walter MF, Jacob RF. Effects of HMG-CoA reductase inhibitors on endothelial function: role of microdomains and oxidative stress. Circulation. 2004;109(21 Suppl 1):II34–41.

    PubMed  Google Scholar 

  20. Aviram M, Rosenblat M, Bisgaier CL, Newton RS. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis. 1998;138(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  21. Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest. 1999;103(6):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feron O, Dessy C, Desager JP, Balligand JL. Hydroxy-methylglutaryl-coenzyme a reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation. 2001;103(1):113–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mason RP, Jacob RF. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism. Biochim Biophys Acta. 2015;1848(2):502–9.

    Article  CAS  PubMed  Google Scholar 

  24. Johansen O, Seljeflot I, Hostmark AT, Arnesen H. The effect of supplementation with omega-3 fatty acids on soluble markers of endothelial function in patients with coronary heart disease. Arterioscler Thromb Vasc Biol. 1999;19(7):1681–6.

    Article  CAS  PubMed  Google Scholar 

  25. Mason RP, Sherratt SC, Jacob RF. Eicosapentaenoic acid inhibits oxidation of ApoB-containing lipoprotein particles of different size in vitro when administered alone or in combination with atorvastatin active metabolite compared with other triglyceride-lowering agents. J Cardiovasc Pharmacol. 2016;68(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaikh SR, Teague H. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function. Prostaglandins Leukot Essent Fatty Acids. 2012;87(6):205–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim Biophys Acta. 2015;1848(1 Pt B):211–9.

    Article  CAS  PubMed  Google Scholar 

  28. Mozaffarian D, Wu JH. (n-3) Fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr. 2012;142(3):614S–25S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams JA, Batten SE, Harris M, Rockett BD, Shaikh SR, Stillwell W, et al. Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft domains. Biophys J. 2012;103(2):228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hashimoto M, Hossain S, Yamasaki H, Yazawa K, Masumura S. Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids. 1999;34(12):1297–304.

    Article  CAS  PubMed  Google Scholar 

  31. Shaikh SR, Rockett BD, Salameh M, Carraway K. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells. J Nutr. 2009;139(9):1632–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mason RP, Sherratt SCR, Jacob RF. Eicosapentaenoic acid (EPA) inhibited cholesterol domain formation and lipid oxidation while preserving bilayer width in model membranes exposed to oxidative stress or cholesterol levels. In: Poster presentation at the 2016 DEUEL Conference on Lipids March 1–4, 2016, Napa, CA. 2016.

    Google Scholar 

  33. Mason RP, Jacob RF, Shrivastava S, Sherratt SC, Chattopadhyay A. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. Biochim Biophys Acta. 2016;1858(12):3131–40.

    Article  CAS  PubMed  Google Scholar 

  34. Iwamatsu K, Abe S, Nishida H, Kageyama M, Nasuno T, Sakuma M, et al. Which has the stronger impact on coronary artery disease, eicosapentaenoic acid or docosahexaenoic acid? Hypertens Res. 2016;39(4):272–5.

    Article  CAS  PubMed  Google Scholar 

  35. GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354(9177):447–55.

    Article  Google Scholar 

  36. Heart Failure Investigators GISSI, Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1223–30.

    Article  Google Scholar 

  37. Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105(16):1897–903.

    Article  CAS  PubMed  Google Scholar 

  38. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8.

    Article  CAS  PubMed  Google Scholar 

  39. Saito Y, Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Ishikawa Y, et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA lipid intervention study (JELIS). Atherosclerosis. 2008;200(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka K, Ishikawa Y, Yokoyama M, Origasa H, Matsuzaki M, Saito Y, et al. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: subanalysis of the JELIS trial. Stroke. 2008;39(7):2052–8.

    Article  CAS  PubMed  Google Scholar 

  41. Matsuzaki M, Yokoyama M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, et al. Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease. Circ J. 2009;73(7):1283–90.

    Article  CAS  PubMed  Google Scholar 

  42. Casula M, Soranna D, Catapano AL, Corrao G. Long-term effect of high dose omega-3 fatty acid supplementation for secondary prevention of cardiovascular outcomes: a meta-analysis of randomized, placebo controlled trials [corrected]. Atheroscler Suppl. 2013;14(2):243–51.

    Article  PubMed  Google Scholar 

  43. Einvik G, Klemsdal TO, Sandvik L, Hjerkinn EM. A randomized clinical trial on n-3 polyunsaturated fatty acids supplementation and all-cause mortality in elderly men at high cardiovascular risk. Eur J Cardiovasc Prev Rehabil. 2010;17(5):588–92.

    Article  PubMed  Google Scholar 

  44. Galan P, Kesse-Guyot E, Czernichow S, Briancon S, Blacher J, Hercberg S, et al. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial. BMJ. 2010;341:c6273.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Geleijnse JM, Giltay EJ, Schouten EG, de Goede J, Oude Griep LM, Teitsma-Jansen AM, et al. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4837 post-myocardial infarction patients: design and baseline characteristics of the Alpha Omega Trial. Am Heart J. 2010;159(4):539–46. e2

    Article  CAS  PubMed  Google Scholar 

  46. Kromhout D, Giltay EJ, Geleijnse JM. Alpha Omega Trial G. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010;363(21):2015–26.

    Article  CAS  PubMed  Google Scholar 

  47. Origin Trial Investigators, Bosch J, Gerstein HC, Dagenais GR, Diaz R, Dyal L, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309–18.

    Article  Google Scholar 

  48. Rauch B, Schiele R, Schneider S, Diller F, Victor N, Gohlke H, et al. OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation. 2010;122(21):2152–9.

    Article  CAS  PubMed  Google Scholar 

  49. Risk Prevention Study Collaborative Group, Roncaglioni MC, Tombesi M, Avanzini F, Barlera S, Caimi V, et al. n-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368(19):1800–8.

    Article  Google Scholar 

  50. Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308(10):1024–33.

    Article  CAS  PubMed  Google Scholar 

  51. Clinicaltrials.gov. A study of AMR101 to evaluate its ability to reduce cardiovascular events in high risk patients with hypertriglyceridemia and on statin. The primary objective is to evaluate the effect of 4 g/Day AMR101 for preventing the occurrence of a first major cardiovascular event (REDUCE-IT). Clinicaltrials.gov Identifier: NCT01426361. 2015.

    Google Scholar 

  52. Clinicaltrials.gov. Outcomes study to assess STatin Residual risk reduction with EpaNova in HiGh CV risk PatienTs with Hypertriglyceridemia (STRENGTH). Clinicaltrials.gov Identifer: NCT02104817. 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Preston Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mason, R.P., Jacob, R.F. (2017). Effects of Oxidative Stress, Hyperglycemia, and Hypercholesterolemia on Membrane Structural Organization and the Interactions of Omega-3 Fatty Acids. In: Chattopadhyay, A. (eds) Membrane Organization and Dynamics . Springer Series in Biophysics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-66601-3_3

Download citation

Publish with us

Policies and ethics