Skip to main content
Log in

Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells

  • Published:
Lipids

Abstract

We investigated the relative effects of n−3 eicosapentaenoic acid (EPA, 20∶5n−3) and docosahexaenoic acid (DHA, 22∶6n−3) on the plasma membrane fluidity of endothelial cells (EC) cultured from the thoracic aorta by determining fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its cationic derivative trimethylamino-DPH (TMA-DPH). Fluidity assessed by TMA-DPH demonstrated no significant differences in plasma membranes of vehicle (dimethyl sulfoxide; DMSO)-, EPA-, and DHA-treated EC. Plasma membrane fluidity assessed by DPH polarization, however, was significantly higher in the order of DHA>EPA>DMSO. Total cholesterol content decreased significantly by 28.4 and 15.9% in the plasma membranes of DHA- and EPA-treated cells, respectively. Total phospholipid content remained unaltered in the plasma membranes of the three groups of cells; however, the molar ratio of total cholesterol to phospholipid decreased significantly only in the membranes of DHA-treated EC. The unsaturation index in the plasma membranes of EPA- and DHA-treated cells increased by 35.7 and 64.3%, respectively, compared with that in the plasma membranes of control cells. The activities of catalase and glutathione peroxidase in the whole-cell homogenates, and levels of lipid peroxides in either the whole-cell homogenates or in plasma membrane fractions were not altered in EPA- or DHA-treated EC. These results indicate that the influence of DHA is greater than that of EPA in increasing plasma membrane fluidity of vascular EC. We speculate that the greater effect of DHA compared to EPA is due to its greater ability to decrease membrane cholesterol content or the cholesterol/phospholipid molar ratio, or both, and also to its greater ability in elevating the unsaturation index in the plasma membranes of EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

CAT:

catalase

DOW:

double-distilled water

DHA:

docosahexaenoic acid

DMSO:

dimethyl sulfoxide

DPA:

docosapentaenoic acid

DPH:

1,6-diphenyl-1,3,5-hexatriene

EC:

endothelial cells

EPA:

eicosapentaenoic acid

GPx:

glutathione peroxidase

HMB-CoA:

hydroxymethylglutaryl-CoA

LA:

linoleic acid

LLN:

linolenic acid

LPO:

lipid peroxide products

OA:

oleic acid

PM:

plasma membrane(s)

PUFA:

polyunsaturated fatty acid(s)

TBARS:

thiobarbituric acid-reactive substances

TMA-DPH:

1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene

USI:

unsaturation index

References

  1. Dyerberg, J., and Bang, H.O. (1982) A Hypothesis on the Development of Acute Myocardial Infarction in Greenlanders, Scand. J. Clin. Lab. Invest. Supplement. 161, 7–13.

    Article  CAS  Google Scholar 

  2. Leaf, A., and Weber, P.C. (1988) Cardiovscular Effects of n-3 Fatty Acids, N. Engl. J. Med. 318, 549–557.

    Article  PubMed  CAS  Google Scholar 

  3. Tinoco, J. (1982) Dietary Requirements and Functions of Alpha-Linolenic Acid in Animals, Prog. Lipid Res. 21, 1–45.

    Article  PubMed  CAS  Google Scholar 

  4. Furchgott, R.F., Jothianandan, D., and Cherry, P.D. (1984) Endothelium-Dependent Responses: The Last Three Years, in Vasodilator Mechanisms (Vanhoutte, P.M., and Vatner, S.F., eds.), pp. 1–15, Karger, Basel.

    Google Scholar 

  5. Patel, J.M., Edwards, D.A., Block, E.R., and Raizada, M.K. (1988) Effect of Nitrogen Dioxide on Surface Membrane Fluidity and Insulin Receptor Binding of Pulmonary Endothelial Cells, Biochem. Pharmacol. 37, 1497–1507.

    Article  PubMed  CAS  Google Scholar 

  6. Sheridan, N.P., and Block, E.R. (1988) Serotonin Transport and Fluidity in Plasma Membrane Vesicles: Effect of Hyperoxia, Am. J. Physiol. 254, C781-C787.

    PubMed  CAS  Google Scholar 

  7. Wince, L.C., and Rutledge, C.O. (1981) The Effect of Dietary Lipid on the Binding of [3H] Dihydroalprenolol and Adenylate Cyclase Activity in Rat Atria, J. Pharmacol. Exp. Ther. 219, 625–631.

    PubMed  CAS  Google Scholar 

  8. Bonaa, K.H., Bjerve, K.S., Straume, B., Gram, I.T., and Thelle, D. (1990) Effect of Eicosapentaenoic and Docosahexaenoic Acids on Blood Pressure in Hypertension. A Population-Based Intervention Trial from the Tromsø Study, N. Engl. J. Med. 322, 795–801.

    Article  PubMed  CAS  Google Scholar 

  9. Hashimoto, M., Shinozuka, K., Shahdat, H.M., Kwon, Y.M., Tanabe, Y., Kunitomo, M., and Masumura S. (1998) Antihypertensive Effect of All-cis-5,8,11,14,17-icosapentaenoate of Aged Rats Is Associated with an Increase in the Release of ATP from the Caudal Artery, J. Vasc. Res. 35, 55–62.

    Article  PubMed  CAS  Google Scholar 

  10. Hashimoto, M., Shinozuka, K., Gamoh, S., Tanabe, Y., Hossain, M.S., Kwon, Y.M., Hata, N., Misawa, Y., Kunitomo, M., and Masumura, S. (1999) The Hypotensive Effect of Docosahexaenoic Acid Is Associated with the Enhanced Release of ATP from the Caudal Artery of Aged Rats, J. Nutr. 129, 70–76.

    PubMed  CAS  Google Scholar 

  11. Grynberg, A., Fournier, A., Sergiel, J.P., and Athias, P. (1995) Effect of Docosahexaenoic Acid and Eicosapentaenoic Acid in the Phospholipids of Rat Heart Muscle Cells on Adrenoceptor Responsiveness and Mechanism, J. Mol. Cell. Cardiol. 27, 2507–2520.

    Article  PubMed  CAS  Google Scholar 

  12. Aarsland, A., Lundquist, M., Borretsen, B., and Berge, R.K. (1990) On the Effect of Peroxisomal β-Oxidation and Carnitine Palmitoyltransferase Activity by Eicosapentaenoic Acid in Liver and Heart from Rats, Lipids 25, 546–548.

    PubMed  CAS  Google Scholar 

  13. Willumsen, N., Hexeberg, S., Skorve, J., Lundquist, M., and Berge, R.K. (1993) Docosahexaenoic Acid Shows No Triglyceride-Lowering Effects but Increases the Peroxisomal Fatty Acid Oxidation in Liver of Rats, J. Lipid Res. 34, 13–22.

    PubMed  CAS  Google Scholar 

  14. Bates, E.J., Ferrante, A., Harvey, D.P., Nandoskar, M., and Poulos, A. (1993) Docosahexanoic Acid (22∶6, n−3) but Not Eicosapentaenoic acid (20∶5, n−3) Can Induce Neutrophil-Mediated Injury of Cultured Endothelial Cells: Involvement of Neutrophil Elastase, J. Leukocyte Biol. 54, 590–598.

    PubMed  CAS  Google Scholar 

  15. Shiina, T., Terano, T., Saito, J., Tamura, Y., and Yoshida, S. (1993) Eicosapentaenoic Acid and Docosahexaenoic Acid Suppress the Proliferation of Vascular Smooth Muscle Cells, Atherosclerosis 104, 95–103.

    Article  PubMed  CAS  Google Scholar 

  16. Khalfoun, B., Thibault, G., Bardos, P., and Lebranchu, Y. (1996) Docosahexaenoic and Eicosapentaenoic Acids Inhibit in vitro Human Lymphocyte-Endothelial Cell Adhesion, Transplantation 62, 1649–1657.

    Article  PubMed  CAS  Google Scholar 

  17. Brown, E.R., and Subbaiah, P.V. (1994) Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Human Skin Fibroblasts, Lipids 29, 825–829.

    PubMed  CAS  Google Scholar 

  18. Hossain, M.S., Hashimoto, M., Gamoh, S., and Masumura, S. (1998) Association of Age-Related Decrease in Platelet Membrane Fluidity with Platelet Lipid Peroxide, Life Sci. 64, 135–143.

    Article  Google Scholar 

  19. Sandermann, H., Jr. (1978) Regulation of Membrane Enzymes by Lipids, Biochim. Biophys. Acta 515, 209–237.

    PubMed  CAS  Google Scholar 

  20. Shinitzky, M., and Henkart, P. (1979) Fluidity of Cell Membranes—Current Concepts and Trends, Int. Rev. Cytol. 60, 121–147.

    Article  PubMed  CAS  Google Scholar 

  21. Piche, L.A., Draper, H.H., and Cole, P.D. (1988) Malondialdehyde Excretion by Subjects Consuming Cod Liver Oil vs. a Concentrate of n-3 Fatty Acids, Lipids 23, 370–371.

    PubMed  CAS  Google Scholar 

  22. Yagi, K. (1978) Lipid Peroxidation and Human Diseases, Chem. Phys. Lipids 45, 337–351.

    Article  Google Scholar 

  23. Hashimoto, M., Hossain, S., and Masumura, S. (1999) Effect of Aging on Plasma Membrane Fluidity of Rat Aortic Endothelial Cell, Exp. Gerontol. 34, 687–698.

    Article  PubMed  CAS  Google Scholar 

  24. Ohki, K., Takamura, T., and Nozawa, Y. (1984) Effect of α-Tocopherol on Lipid Peroxidation and Acyl Chain Mobility of Rat Liver Microsomes from Vitamin E-Deficient Rat, J. Nutr. Sci. Vitaminol. 30, 221–234.

    PubMed  CAS  Google Scholar 

  25. Numagami, Y., Zubrow, A.B., Mishra, O.P., and Delivoria-Papadopoulos, M. (1997) Lipid Free Radical Generation and Brain Cell Membrane Alteration Following Nitric Oxide Synthase Inhibition During Cerebral Hypoxia in the Newborn Piglet, J. Neurochem. 69, 1542–1547.

    Article  PubMed  CAS  Google Scholar 

  26. Hashimoto, M., Shinozuka, K., Bjur, R.A., Westfall, D.P., Hattori, K., and Masumura, S. (1995) The Effects of Age on the Release of Adenine Nucleosides and Nucleotides from Rat Caudal Artery, J. Physiol. (London). 489, 841–848.

    CAS  Google Scholar 

  27. Gerritsen, M.E., Schwarz, S.M., and Medow, M.S. (1991) Glucocorticoid-Mediated Alterations in Fluidity of Rabbit Cardiac Muscle Microvessel Endothelial Cell Membranes: Influences on Eicosanoid Release, Biochim. Biophys. Acta 1065, 63–68.

    Article  PubMed  CAS  Google Scholar 

  28. Lowry, H.O., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  29. Shinitzky, M., and Barenholz, Y. (1978) Fluidity Parameters of Lipid Regions Determined by Fluorescence Polarization, Biochim. Biophys. Acta 515, 367–394.

    PubMed  CAS  Google Scholar 

  30. Kuhry, J.G., Duportail, G., Bronner, C., and Laustriat, G. (1985) Plasma Membrane Fluidity Measurements on Whole Living Cells by Fluorescence Anisotropy of Trimethylammonium-diphenylhexatriene, Biochim. Biophys. Acta 845, 60–67.

    Article  PubMed  CAS  Google Scholar 

  31. Ohkawa, H., Ohnishi, N., and Yagi, K. (1979) Assay for Lipid Peroxides in Animal Tissue by Thiobarbituric Acid Reaction, Anal. Biochem. 95, 351–358.

    Article  PubMed  CAS  Google Scholar 

  32. Johansson, L.H., and Borg, L.A.H. (1988) A Spectrophotometric Method for Determination of Catalase Activity in Small Tissue Samples, Anal. Biochem. 174, 331–336.

    Article  PubMed  CAS  Google Scholar 

  33. Wheeler, C.R., Salzman, J.A., Elsayed, N.M., Omaye, S.T., and Korte, D.W., Jr. (1990) Automated Assays for Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione Reductase Activity, Anal. Biochem. 184, 193–199.

    Article  PubMed  CAS  Google Scholar 

  34. Hossain, M.S., Hashimoto, M., Gamoh, S., and Masumura, S. (1999) Antioxidative Effects of Docosahexaenoic Acid in the Cerebrum Versus Cerebellum and Brain Stem of Aged Hypercholesterolemic Rats, J. Neurochem. 72, 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  35. Lepage, G., and Roy, C.C. (1986) Direct Transesterification of All Classes of Lipids in a One-Step Reaction, J. Lipid Res. 27, 114–120.

    PubMed  CAS  Google Scholar 

  36. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  37. Lakowicz, J.R. (1983) Time-Dependent Decays of Fluorescense Anisotropy, in Principles of Fluorescence Spectroscopy, (Lakowicz, J.M., ed.), pp. 156–183, Plenum Press, New York.

    Google Scholar 

  38. Pessin, J.E., Salter, D.W., and Glaser, M. (1978) Use of a Fluorescent Probe to Compare the Plasma Membrane Properties in Normal and Transformed Cells. Evaluation of the Interference by Triacylglycerols and Alkyldiacylglycerols, Biochemistry 17, 1997–2004.

    Article  PubMed  CAS  Google Scholar 

  39. Mateo, C.R., Lillo, M.P., Gonzalez-Rodriguez, J., and Acuna, A.U. (1991) Molecular Order and Fluidity of the Plasma Membrane of Human Platelets from Time-Resolved Fluorescence Depolarization, Eur. Biophys. J. 20, 41–52.

    PubMed  CAS  Google Scholar 

  40. Kanayasu, T., Morita, I., Nakao-Hayashi, J., Ito, H., and Murota, S. (1991) Enhancement of Migration in Bovine Endothelial Cells by Eicosapentaenoic Acid Pretreatment, Atherosclerosis 87, 57–64.

    Article  PubMed  CAS  Google Scholar 

  41. Stubbs, C.D., Kouyama, T., Kinosita, K., Jr., and Ikegami, A. (1981) Effect of Double Bonds on the Dynamic Properties of the Hydrocarbon Region of Lecithin Bilayers, Biochemistry 20, 4257–4262.

    Article  PubMed  CAS  Google Scholar 

  42. Block, E.R., and Edwards, D. (1987) Effect of Plasma Membrane Fluidity on Serotonin Transport by Endothelial Cells, Am. J. Physiol. 253, C672-C678.

    PubMed  CAS  Google Scholar 

  43. Cader, A.A., Butterfield, D.A., Watkins, B.A., Chung, B.H., and Hennig, B. (1995) Electron Spin Resonance Studies of Fatty Acid-Induced Alterations in Membrane Fluidity in Cultured Endothelial Cells, Int. J. Biochem. Cell Biol. 27, 665–673.

    Article  PubMed  CAS  Google Scholar 

  44. Stubbs, C.D., and Smith, A.D. (1984) The Modification of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function, Biochim. Biophys. Acta 779, 89–137.

    PubMed  CAS  Google Scholar 

  45. Yau, T.M., Buckman, T., Hale, A.H., and Weber, W.J. (1976) Alterations in Lipid Acyl Group Composition and Membrane Structure in Cells Transformed by Rous Sarcoma Virus, Biochemistry 15, 3216–3219.

    Article  Google Scholar 

  46. Buczynski, A., Wachowicz, B., Kedziora-Kornatowska, K., Tkaczewski, W., and Kedziora, J. (1993) Changes in Antioxidant Enzymes Activities, Aggregability and Malonyldialdehyde Concentration in Blood Platelets from Patients with Coronary Heart Disease, Atherosclerosis 100, 223–228.

    Article  PubMed  CAS  Google Scholar 

  47. Fonlupt, P., and Croset, M. (1994) Incorporation of Arachidonic and Docosahexaenoic Acids into Phospholipids of Rat Brain Membranes, Neurosci. Lett. 171, 137–141.

    Article  PubMed  CAS  Google Scholar 

  48. Bazan, N.G. (1990) Nutrition and the Brain (Wurtman, R.J., and Wurtman, J.J., eds.), pp. 1–24, Raven-Press, New York.

    Google Scholar 

  49. Kuroda, M., and Endo, A. (1978) Inhibition of in vitro Cholesterol Synthesis by Fatty Acids, Biochim. Biophys. Acta 486, 70–81.

    Google Scholar 

  50. Morita, I., Sato, I., Ma, L., and Murota, S. (1996) Enhancement of Membrane Fluidity in Cholesterol-Poor Endothelial Cells Pre-Treated with Simvastatin, Endothelium 5, 107–113.

    Article  Google Scholar 

  51. Mcintosh, T.J. (1978) The Effect of Cholesterol on the Structure of Phosphatidylcholine Bilayers, Biochim. Biophys. Acta 513, 43–58.

    Article  PubMed  CAS  Google Scholar 

  52. Stockton, G.W., and Smith, I.C.P. (1976) A Deuterium Nuclear Magnetic Resonance Study of the Condensing Effect of Cholesterol on Egg Phosphatidylcholine Bilayer Membranes, Chem. Phys. Lipids 17, 251–263.

    Article  PubMed  CAS  Google Scholar 

  53. El-Sayed, M.Y., Guion, T.A., and Foyer, M.D. (1986) Effect of Cholesterol on Viscoelastic Properties of Dipalmitoylphosphatidylcholine Multibilayers as Measured by a Laser-Induced Ultrasonic Probe, Biochemistry 25, 4825–4832.

    Article  PubMed  CAS  Google Scholar 

  54. Hossain, S., Hashimoto, M., and Masumura, S. (1990) Age-Related Changes in Platelet Microviscosity and Aggregation in Rats, Clin. Exp. Pharmacol. Physiol. 26, 426–432.

    Article  Google Scholar 

  55. Le Quan Sang, K.H., Mazeaud, M., Astarie, C., and Duranthon, V. (1998) Plasma Lipids and Platelet Membrane Fluidity Is Essential, Thromb. Haemostasis 69, 70–76.

    Google Scholar 

  56. Maguire, P.A., and Druse, M.J. (1989) The Influence of Cholesterol on Synaptic Fluidity and Dopamine Uptake, Brain Res. Bull. 22, 431–437.

    Article  PubMed  CAS  Google Scholar 

  57. Masotti, L., Casali, E., and Galeotti, J. (1988) Lipid Peroxidation in Tumor Cells, Free Radical Biol. Med. 4, 377–386.

    Article  CAS  Google Scholar 

  58. Venkatraman, J.T., Chandrasekar, B., Kim, J.D., and Fernandes, G. (1994) Effects of n−3 and n−6 Fatty Acids on the Activities and Expression of Hepatic Antioxidant Enzymes in Autoimmune-Prone NZBxNZW F1 Mice, Lipids 29, 561–568.

    PubMed  CAS  Google Scholar 

  59. L’Abbé, M.R., Trick, K.D., and Beare-Rogers, J.L. (1991) Dietary (n−3) Fatty Acids Affect Rat Heart, Liver and Aorta Protective Enzyme Activities and Lipid Peroxidation, J. Nutr. 121, 1331–1340.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Hashimoto.

About this article

Cite this article

Hashimoto, M., Hossain, M.S., Yamasaki, H. et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34, 1297–1304 (1999). https://doi.org/10.1007/s11745-999-0481-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0481-6

Keywords

Navigation