Skip to main content

Advertisement

Log in

Cholesterol Crystals and Inflammation

  • CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Chronic vascular inflammation is regarded as a crucial aspect of cardiovascular disease. However, the elicitors of this inflammatory response in the vessel wall are currently not well understood. Excessive amounts of cholesterol, an abundant and fundamental lipid molecule in mammalian cells, can initiate the development and progression of atherosclerosis. Accumulation of cholesterol in early atherosclerotic lesions results in the formation of macrophage foam cells, and crystalline cholesterol is found as a characteristic of advanced atherosclerotic plaques. Cholesterol crystals can activate the NLRP3 inflammasome, a multimolecular signaling complex of the innate immune system, resulting in caspase-1 mediated activation and secretion of proinflammatory interleukin-1 family cytokines. Furthermore, crystalline cholesterol is believed to induce plaque rupture by physical disruption of the fibrous cap covering atherosclerotic lesions. Here we review the effect of cholesterol deposition and crystallization on inflammatory responses in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  PubMed  CAS  Google Scholar 

  2. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.

    Article  PubMed  CAS  Google Scholar 

  3. Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119(12):3502–11.

    Article  PubMed  CAS  Google Scholar 

  4. Dostert C et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7.

    Article  PubMed  CAS  Google Scholar 

  5. Hornung V et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.

    Article  PubMed  CAS  Google Scholar 

  6. •• Duewell P et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61. Demonstration that cholesterol crystals can activate the NLRP3 inflammasome and contribute to development of atherosclerosis in a murine model.

    Article  PubMed  CAS  Google Scholar 

  7. • Rajamaki K et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010;5(7):e11765. This paper reports results revealing that human immune cells can be activated by cholesterol crystals to secrete IL-1β cytokines.

    Article  PubMed  Google Scholar 

  8. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51.

    Article  PubMed  CAS  Google Scholar 

  9. Chang TY et al. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol. 2006;22:129–57.

    Article  PubMed  CAS  Google Scholar 

  10. Small DM. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis. 1988;8(2):103–29.

    Article  PubMed  CAS  Google Scholar 

  11. Tangirala RK et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res. 1994;35(1):93–104.

    PubMed  CAS  Google Scholar 

  12. Kellner-Weibel G et al. Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol. 1999;19(8):1891–8.

    Article  PubMed  CAS  Google Scholar 

  13. Adams CW, Abdulla YH. The action of human high density lipoprotein on cholesterol crystals. Part 1. Light-microscopic observations. Atherosclerosis. 1978;31(4):465–71.

    Article  PubMed  CAS  Google Scholar 

  14. Abdulla YH, Adams CW. The action of human high density lipoprotein on cholesterol crystals. Part 2. Biochemical observations. Atherosclerosis. 1978;31(4):473–80.

    Article  PubMed  CAS  Google Scholar 

  15. Krut LH. Clearance of subcutaneous implants of cholesterol in the rat promoted by oxidation products of cholesterol. A postulated role for oxysterols in preventing atherosclerosis. Atherosclerosis. 1982;43(1):105–18.

    Article  PubMed  CAS  Google Scholar 

  16. Swartz Jr GM et al. Antibodies to cholesterol. Proc Natl Acad Sci U S A. 1988;85(6):1902–6.

    Article  PubMed  CAS  Google Scholar 

  17. Hammerschmidt DE et al. Cholesterol and atheroma lipids activate complement and stimulate granulocytes. A possible mechanism for amplification of ischemic injury in atherosclerotic states. J Lab Clin Med. 1981;98(1):68–77.

    PubMed  CAS  Google Scholar 

  18. Sedaghat A, Grundy SM. Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med. 1980;302(23):1274–7.

    Article  PubMed  CAS  Google Scholar 

  19. Nair PN, Sjogren U, Sundqvist G. Cholesterol crystals as an etiological factor in non-resolving chronic inflammation: an experimental study in guinea pigs. Eur J Oral Sci. 1998;106(2 Pt 1):644–50.

    Article  PubMed  CAS  Google Scholar 

  20. Sjogren U et al. Bone-resorbing activity from cholesterol-exposed macrophages due to enhanced expression of interleukin-1alpha. J Dent Res. 2002;81(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  21. Nissen SE et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354(12):1253–63.

    Article  PubMed  CAS  Google Scholar 

  22. Meuwese MC et al. ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA. 2009;301(11):1131–9.

    Article  PubMed  CAS  Google Scholar 

  23. Accad M et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest. 2000;105(6):711–9.

    Article  PubMed  CAS  Google Scholar 

  24. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.

    Article  PubMed  CAS  Google Scholar 

  25. Wright SD et al. Infectious agents are not necessary for murine atherogenesis. J Exp Med. 2000;191(8):1437–42.

    Article  PubMed  CAS  Google Scholar 

  26. Abela GS, Aziz K. Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis. Clin Cardiol. 2005;28(9):413–20.

    Article  PubMed  Google Scholar 

  27. Abela GS, Aziz K. Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events—a novel insight into plaque rupture by scanning electron microscopy. Scanning. 2006;28(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  28. Abela GS et al. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol. 2009;103(7):959–68.

    Article  PubMed  CAS  Google Scholar 

  29. Galea J et al. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 1996;16(8):1000–6.

    Article  PubMed  CAS  Google Scholar 

  30. Kirii H et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60.

    Article  PubMed  CAS  Google Scholar 

  31. Menu P et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2011;2:e137.

    Article  PubMed  CAS  Google Scholar 

  32. Wouters K et al. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med. 2005;43(5):470–9.

    Article  PubMed  CAS  Google Scholar 

  33. • Razani B et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012;15(4):534–44. This paper reports results indicating that autophagy regulates NLRP3 inflammasome activation by cholesterol crystals in atherosclerotic plaques.

    Article  PubMed  CAS  Google Scholar 

  34. Abela GS. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol. 2010;4(3):156–64.

    Article  PubMed  Google Scholar 

  35. Gordon T et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62(5):707–14.

    Article  PubMed  CAS  Google Scholar 

  36. Redondo S et al. Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis. 2011;10:175.

    Article  PubMed  CAS  Google Scholar 

  37. Hewing B, Fisher EA. Rationale for cholesteryl ester transfer protein inhibition. Curr Opin Lipidol. 2012;23(4):372–6.

    Article  PubMed  CAS  Google Scholar 

  38. Schwartz, G.G., et al., Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. N Engl J Med, 2012.

  39. Nicklin MJ et al. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med. 2000;191(2):303–12.

    Article  PubMed  CAS  Google Scholar 

  40. Isoda K et al. Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2004;24(6):1068–73.

    Article  PubMed  CAS  Google Scholar 

  41. Devlin CM et al. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A. 2002;99(9):6280–5.

    Article  PubMed  CAS  Google Scholar 

  42. Elhage R et al. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97(3):242–4.

    Article  PubMed  CAS  Google Scholar 

  43. • Ridker PM et al. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605. Design of the CANTOS study testing the effect of anti-IL-1β therapy in atherosclerosis. The first human test of the inflammation hypothesis for atherogenesis.

    Article  PubMed  CAS  Google Scholar 

  44. Alexander MR et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest. 2012;122(1):70–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eicke Latz.

Additional information

This article is part of the Topical Collection on Crystal Arthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grebe, A., Latz, E. Cholesterol Crystals and Inflammation. Curr Rheumatol Rep 15, 313 (2013). https://doi.org/10.1007/s11926-012-0313-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-012-0313-z

Keywords

Navigation